

XGameStation™ Micro Edition User Guide
Copyright © 2004-2005 Nurve Networks LLC

Author
Alex Varanese

Editor/Technical Reviewer
André LaMothe

Version
1.1

ISBN
Pending

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with respect to the user of the information contained
herein. Although every precaution has been taken in the preparation of this book, the publisher and
authors assume no responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein.

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Nurve Networks LLC cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no warranty
or fitness is implied. The information provided is on an “as is” basis. The authors and the publisher shall
have neither liability nor any responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book.

The example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company, organization,
product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

eBook License
This eBook may be printed for personal use and (1) copy may be made for archival purposes, but may
not be distributed by any means whatsoever, sold, resold, in any form, in whole, or in parts. Additionally,
the contents of the CD this eBook came on relating to the design, development, imagery, or any and all
related subject matter pertaining to the XGameStation Micro Edition are copyrighted as well and may not
be distributed in any way whatsoever in whole or in part. Individual programs are copyrighted by their
respective owners and may require separate licensing.

Licensing, Terms & Conditions
NURVE NETWORKS LLC, INC. END-USER LICENSE AGREEMENT FOR XGAMESTATION MICRO EDITION HARDWARE, SOFTWARE AND EBOOKS

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE USING THIS PRODUCT. IT CONTAINS SOFTWARE, THE USE OF WHICH IS
LICENSED BY NURVE NETWORKS LLC, INC., TO ITS CUSTOMERS FOR THEIR USE ONLY AS SET FORTH BELOW. IF YOU DO NOT AGREE TO THE TERMS AND
CONDITIONS OF THIS AGREEMENT, DO NOT USE THE SOFTWARE OR HARDWARE. USING ANY PART OF THE SOFTWARE OR HARDWARE INDICATES THAT YOU
ACCEPT THESE TERMS.

GRANT OF LICENSE: NURVE NETWORKS LLC (the "Licensor") grants to you this personal, limited, non-exclusive, non-transferable, non-assignable license solely to use in a
single copy of the Licensed Works on a single computer for use by a single concurrent user only, and solely provided that you adhere to all of the terms and conditions of this
Agreement. The foregoing is an express limited use license and not an assignment, sale, or other transfer of the Licensed Works or any Intellectual Property Rights of Licensor.

ASSENT: By opening the files and or packaging containing this software and or hardware, you agree that this Agreement is a legally binding and valid contract, agree to abide
by the intellectual property laws and all of the terms and conditions of this Agreement, and further agree to take all necessary steps to ensure that the terms and conditions of
this Agreement are not violated by any person or entity under your control or in your service.

OWNERSHIP OF SOFTWARE AND HARDWARE: The Licensor and/or its affiliates or subsidiaries own certain rights that may exist from time to time in this or any other
jurisdiction, whether foreign or domestic, under patent law, copyright law, publicity rights law, moral rights law, trade secret law, trademark law, unfair competition law or other
similar protections, regardless of whether or not such rights or protections are registered or perfected (the "Intellectual Property Rights"), in the computer software and
hardware, together with any related documentation (including design, systems and user) and other materials for use in connection with such computer software and hardware in
this package (collectively, the "Licensed Works"). ALL INTELLECTUAL PROPERTY RIGHTS IN AND TO THE LICENSED WORKS ARE AND SHALL REMAIN IN LICENSOR.

RESTRICTIONS:
(a) You are expressly prohibited from copying, modifying, merging, selling, leasing, redistributing, assigning, or transferring in any matter, Licensed Works or any portion
thereof.
(b) You may make a single copy of software materials within the package or otherwise related to Licensed Works only as required for backup purposes.
(c) You are also expressly prohibited from reverse engineering, decompiling, translating, disassembling, deciphering, decrypting, or otherwise attempting to discover the source
code of the Licensed Works as the Licensed Works contain proprietary material of Licensor. You may not otherwise modify, alter, adapt, port, or merge the Licensed Works.
(d) You may not remove, alter, deface, overprint or otherwise obscure Licensor patent, trademark, service mark or copyright notices.
(e) You agree that the Licensed Works will not be shipped, transferred or exported into any other country, or used in any manner prohibited by any government agency or any
export laws, restrictions or regulations.
(f) You may not publish or distribute in any form of electronic or printed communication the materials within or otherwise related to Licensed Works, including but not limited to
the object code, documentation, help files, examples, and benchmarks.

TERM: This Agreement is effective until terminated. You may terminate this Agreement at any time by uninstalling the Licensed Works and destroying all copies of the Licensed
Works both HARDWARE and SOFTWARE. Upon any termination, you agree to uninstall the Licensed Works and return or destroy all copies of the Licensed Works, any
accompanying documentation, and all other associated materials.

WARRANTIES AND DISCLAIMER: EXCEPT AS EXPRESSLY PROVIDED OTHERWISE IN A WRITTEN AGREEMENT BETWEEN LICENSOR AND YOU, THE LICENSED
WORKS ARE NOW PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THE WARRANTY OF NON-INFRINGEMENT. WITHOUT LIMITING THE
FOREGOING, LICENSOR MAKES NO WARRANTY THAT (i) THE LICENSED WORKS WILL MEET YOUR REQUIREMENTS, (ii) THE USE OF THE LICENSED WORKS
WILL BE UNINTERRUPTED, TIMELY, SECURE, OR ERROR-FREE, (iii) THE RESULTS THAT MAY BE OBTAINED FROM THE USE OF THE LICENSED WORKS WILL BE
ACCURATE OR RELIABLE, (iv) THE QUALITY OF THE LICENSED WORKS WILL MEET YOUR EXPECTATIONS, (v) ANY ERRORS IN THE LICENSED WORKS WILL BE
CORRECTED, AND/OR (vi) YOU MAY USE, PRACTICE, EXECUTE, OR ACCESS THE LICENSED WORKS WITHOUT VIOLATING THE INTELLECTUAL PROPERTY
RIGHTS OF OTHERS. SOME STATES OR JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES OR LIMITATIONS ON HOW LONG AN
IMPLIED WARRANTY MAY LAST, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. IF CALIFORNIA LAW IS NOT HELD TO APPLY TO THIS AGREEMENT FOR
ANY REASON, THEN IN JURISDICTIONS WHERE WARRANTIES, GUARANTEES, REPRESENTATIONS, AND/OR CONDITIONS OF ANY TYPE MAY NOT BE
DISCLAIMED, ANY SUCH WARRANTY, GUARANTEE, REPRESENATION AND/OR WARRANTY IS: (1) HEREBY LIMITED TO THE PERIOD OF EITHER (A) Five (5) DAYS
FROM THE DATE OF OPENING THE PACKAGE CONTAINING THE LICENSED WORKS OR (B) THE SHORTEST PERIOD ALLOWED BY LAW IN THE APPLICABLE
JURISDICTION IF A FIVE (5) DAY LIMITATION WOULD BE UNENFORCEABLE; AND (2) LICENSOR'S SOLE LIABILITY FOR ANY BREACH OF ANY SUCH WARRANTY,
GUARANTEE, REPRESENTATION, AND/OR CONDITION SHALL BE TO PROVIDE YOU WITH A NEW COPY OF THE LICENSED WORKS. IN NO EVENT SHALL
LICENSOR OR ITS SUPPLIERS BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING, WITHOUT LIMITATION, THOSE RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT
LICENSOR HAD BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
USE OF THE LICENSED WORKS. SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL
DAMAGES, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL
PURPOSE OF ANY LIMITED REMEDY.

SEVERABILITY: In the event any provision of this License Agreement is found to be invalid, illegal or unenforceable, the validity, legality and enforceability of any of the
remaining provisions shall not in any way be affected or impaired and a valid, legal and enforceable provision of similar intent and economic impact shall be substituted
therefore.

ENTIRE AGREEMENT: This License Agreement sets forth the entire understanding and agreement between you and NURVE NETWORKS LLC, supersedes all prior
agreements, whether written or oral, with respect to the Software, and may be amended only in a writing signed by both parties.

Version & Support/Web Site
This document is valid with the following hardware, software and firmware versions:

• XGS Micro Edition 1.5 or greater.

• XGS Micro Studio IDE version 1.0.

• XGS ME Programmer Unit Firmware version 1.0.

The information herein will usually apply to newer versions but may not apply to older versions. Please
contact Nurve Networks LLC for any questions you may have.

Visit www.xgamestation.com for downloads, support, access to the XGS ME user community, and
more!

For technical support, sales, or to ask questions, share feedback, please contact Nurve Networks LLC at:

NURVE NETWORKS LLC
402 Camino Arroyo West
Danville, CA 94506
USA

support@nurve.net

Welcome!
Thank you for purchasing the XGameStation Micro Edition! We have worked hard to provide a unique,
high-quality, and educational product that will both engage and entertain. The XGameStation Micro
Edition is the world’s first do-it-yourself video game system and an empowering tool that will bring you an
unprecedented level of knowledge and understanding, whether you’re a hobbyist, student, or both.

Table of Contents

XGameStation™ Micro Edition User Guide
i

Table of Contents

CHAPTER 1: WELCOME!.. 1

1.1 - Package Contents...1
1.1.1 - How Your Package May Differ ...2

1.2 - Important Safety Information!..2
1.2.1 - Place the XGS ME in Safe Locations Only ..2
1.2.2 - Be Careful of XGS ME Cords and Cables ...2
1.2.3 - Connecting Cords and Cables to the XGS ME Safely ...2
1.2.4 - Carpet and Other Sources of Electro-Static Discharge (ESD)...3
1.2.5 - Do Not Expose the XGS ME to Liquids or Moisture ..3
1.2.6 - When to Unplug the XGS ME ..3
1.2.7 - Overloading Extension Cords, Wall outlets and Receptacles..3
1.2.8 - Only Use XGS ME-compatible Power Supplies...3
1.2.9 - Important Heat Sink Information ..4
1.2.10 - Heat Sinks can be Very Hot ...4
1.2.11 - If The Processor Heat Sink Detaches ..5
1.2.12 - Warranty Information..5

1.3 - What is the XGameStation Micro Edition? ...6
1.3.1 - System Overview ...6

CHAPTER 2: QUICK START GUIDES .. 10

2.1 - Guide 1 - How to Run the Pre-Loaded Demo ...10
2.1.1.1 - Step 1 – Power up the System..10
2.1.1.2 - Step 2 – Connect the System to a Television ...10
2.1.1.3 - Step 3 – Connect the Controller ..11
2.1.1.4 - Step 4 – Turn it On! ...12
2.1.1.5 - Common Problems and Issues ...13

2.2 - Guide 2 – How to Load an Example Program onto the XGS ME..14
2.2.1 - Using the Built-in Programmer and XGS Micro Studio IDE ...14

2.2.1.1 - Step 1 – Set up the XGameStation Console ...14
2.2.1.2 - Step 2 – Connect the XGS ME to the Development PC ...14
2.2.1.3 - Step 3 – Install the XGS Micro Studio IDE and Example Programs on the PC15
2.2.1.4 - Step 4 – Launch the XGS Micro Studio IDE..16
2.2.1.5 - Step 5 – Configure the XGS Micro Studio IDE..17
2.2.1.6 - Step 6 – Load and Program a Game Demo..18
2.2.1.7 - Common Problems and Issues ...19

2.2.2 - Using the SX-Key ...19
2.2.2.1 - Step 1 – Set up the XGameStation Console ...19

Table of Contents

XGameStation™ Micro Edition User Guide
ii

2.2.2.2 - Step 2 – Connect the XGS ME to the Development PC ...19
2.2.2.3 - Step 3 – Install the SX-Key IDE and Example Programs on the PC.....................................20
2.2.2.4 - Step 4 – Launch the SX-Key IDE ..20
2.2.2.5 - Step 5 – Configure the SX-Key IDE ..21
2.2.2.6 - Step 6 – Load and Program a Game Demo..21
2.2.2.7 - Common Problems and Issues ...22

2.3 - Guide 3 – How to Write a Program for the XGS ME ..22
2.3.1 - Using the Built-in Programmer and XGS Micro Studio IDE ...23

2.3.1.1 - Step 1 – Set up the XGameStation Console for Programming ...23
2.3.1.2 - Step 2 – Create a new Document ...23
2.3.1.3 - Step 3 – Enter a Demo Program ...23
2.3.1.4 - Syntax Errors ...25
2.3.1.5 - Common Problems and Issues ...25

2.3.2 - Using the SX-Key ...25
2.3.2.1 - Step 1 – Set up the XGameStation Console for Programming ...25
2.3.2.2 - Step 2 – Enter a Demo Program ...26
2.3.2.3 - Syntax Errors ...27
2.3.2.4 - Common Problems and Issues ...28

CHAPTER 3: USING XGS MICRO STUDIO .. 29

3.1 - Installing the XGS Micro Studio Software..29

3.2 - Elements of the Interface ...29
3.2.1 - The Toolbar ..31
3.2.2 - The Document Selector..33
3.2.3 - The Document Area ...34
3.2.4 - The Output Window..34
3.2.5 - The Status Bar ...35

3.3 - Editing, Loading and Running Programs...35
3.3.1 - Loading & Editing Source Code ...35

3.3.1.1 - Line Numbers ..35
3.3.1.2 - Document Editing Colors...36

3.3.2 - Running Programs ...36

3.4 - Configuring the Tools...36
3.4.1.1 - The Assembler Input Tab ..37
3.4.1.2 - The Assembler Output Tab ...39
3.4.1.3 - The Hardware Tab...41
3.4.1.4 - Programmer Repetition ...42
3.4.1.5 - Write Check Frequency ...42
3.4.1.6 - Parallel Port ...43
3.4.1.7 - Restore Hardware Defaults ...43

Table of Contents

XGameStation™ Micro Edition User Guide
iii

3.4.1.8 - The Editor Colors & Styles Tab ...43
3.4.1.9 - Font..44
3.4.1.10 - Size..44
3.4.1.11 - Text Color ..44
3.4.1.12 - Background Color..44
3.4.1.13 - Tab Size...45
3.4.1.14 - Tabs as Spaces ...45
3.4.1.15 - Show Line Numbers ..45

3.5 - The Real-Time SX Interface ...45
3.5.1 - The Main Interface Tab ..45

3.5.1.1 - Programming the XGS Micro With a Hex Program ...47
3.5.1.2 - Saving the XGS Micro to a Hex Program..47

3.5.2 - The Registers Tab..47
3.5.2.1 - Reading Registers ...49
3.5.2.2 - Programming Registers...49

3.6 - The Instruction Browser...49
3.6.1 - Instruction Lookups ..50

CHAPTER 4: USING SX-KEY.. 52

4.1 - Installing the SX-Key Software..52

4.2 - Elements of the Interface ...52
4.2.1 - The Toolbar & Menu Bar ..54

4.2.1.1 - The File Menu..55
4.2.1.2 - The Edit Menu ...55
4.2.1.3 - The Run Menu ...56
4.2.1.4 - The Help Menu ..56

4.2.2 - The Document Selector..56
4.2.3 - The Document Area ...57
4.2.4 - The Output Window..57
4.2.5 - The Status Bar ...58

4.3 - Editing, Loading and Running Programs...58
4.3.1 - Loading & Editing Source Code ...58
4.3.2 - Programming, Running and Debugging Programs ..58

4.4 - Configuring SX-Key ..59

4.5 - The Device Window ..61

4.6 - The Clock Window ..64

Table of Contents

XGameStation™ Micro Edition User Guide
iv

4.7 - The Debugger..65
4.7.1 - Debugger Overview..65
4.7.2 - The Debug Palette ...66
4.7.3 - The Registers Window ...68

4.7.3.1 - Real-Time Manipulation of Registers ..69
4.7.4 - The Watch Window ..69
4.7.5 - The Code Window..70

4.7.5.1 - Setting the Breakpoint ...70
4.7.5.2 - The Code Window Toolbar..71

CHAPTER 5: TROUBLESHOOTING ... 72

5.1 - XGameStation Micro Edition Console ..72
5.1.1 - Power Supply Plug Doesn’t Fit Outlet ..72
5.1.2 - System Does Not Turn On / No Power ..73
5.1.3 - No Video Output...73
5.1.4 - No Audio Output...75
5.1.5 - Video is Black and White..76
5.1.6 - Video Signal is Fuzzy/Blurry/Noisy ..77

5.2 - XGS Micro Studio IDE...77
5.2.1 - Cannot Initialize WinIO Library...78
5.2.2 - Eratic Behavior in IDE/Crashes..78
5.2.3 - Can’t Communicate with Device/Corrupted Programming ..78
5.2.4 - Program Won’t Assemble/Assembler Crashes..79
5.2.5 - Instruction Browser Is Empty/Garbage ..79
5.2.6 - “Please save this file before…” Error Message ...79

5.3 - Parallax SX-Key IDE..79
5.3.1 - “SX-Key not found on COMx” Error Message..79
5.3.2 - Program Won’t Assemble/Assembler Crashes..80
5.3.3 - "Current file is READ ONLY and must be saved..." Error Message ..81

5.4 - Sanity Checks ...81
5.4.1 - Complete Connections & Settings Reference..82
5.4.2 - Colored Dots on the Oscillator Chips ...84

CHAPTER 6: GUIDE TO INCLUDED DEMO PROGRAMS... 87

6.1 - NTSC Demos ...87
6.1.1 - Fire Cube..88
6.1.2 - Flags...89
6.1.3 - Floormapper ...90
6.1.4 - Pac Man ...91

Table of Contents

XGameStation™ Micro Edition User Guide
v

6.1.5 - Plasma..92
6.1.6 - Pong ...93
6.1.7 - Raycaster ...94
6.1.8 - Rem Colors ..95
6.1.9 - Rotozoomer..96
6.1.10 - Sprites ..97
6.1.11 - Starfield ..98
6.1.12 - Tetris...99
6.1.13 - Racer ..100

6.2 - PAL Demos..101
6.2.1 - Flags...101
6.2.2 - Floormapper ...102
6.2.3 - Plasma..103
6.2.4 - Rotozoomer..104

CHAPTER 7: HACKING THE DEMO PROGRAMS... 105

7.1 - Fun For All Ages ...105

7.2 - NTSC-Compatible Hacks..105
7.2.1 - Recoloring the Raycaster ...105

7.2.1.1 - Recommended Hacks ...107
7.2.2 - Hacking the Plasma ...107

7.2.2.1 - Recommended Hacks ...109
7.2.3 - Altering the Rotozoomer Bitmap ..109

7.2.3.1 - A Color Change ...110
7.2.3.2 - Reassembling ..111
7.2.3.3 - Troubleshooting ...111
7.2.3.4 - Recommended Hack ...112

7.2.4 - Changing the Sprite Demo Bitmaps...112
7.2.4.1 - The Sprite Format..113
7.2.4.2 - Hacking the Sprites ...113
7.2.4.3 - Troubleshooting ...115
7.2.4.4 - Recommended Hack ...115

7.2.5 - Reshaping the Racer Mountain Range ..115
7.2.5.1 - Square Wave Mountains ...116
7.2.5.2 - The Racer City Hack..118
7.2.5.3 - Recommended Hacks ...120

7.2.6 - Reshaping the Tetris Blocks ..120
7.2.6.1 - Hacking the Block Tile ...121
7.2.6.2 - Hacking the Tetris Pieces..124
7.2.6.3 - Recommended Hacks ...126

7.2.7 - Hacking Pac-Man ...127
7.2.7.1 - Redrawing Pac Man as Ms. Pac Man ...128

Table of Contents

XGameStation™ Micro Edition User Guide
vi

7.2.7.2 - Changing the Pac Man and Ghost Colors...129
7.2.7.3 - Changing the Level Border Color ..130

7.3 - PAL-Compatible Hacks ..130
7.3.1 - Hacking the Plasma Text ...131

7.3.1.1 - Decoding the String ...131
7.3.1.2 - Hacking the Text..132
7.3.1.3 - Recommended Hack ...134

7.3.2 - Hacking the Flag Bitmap ..134
7.3.3 - Altering the RotoZoomer Bitmap..136

7.3.3.1 - Changing the Bitmap ...137
7.3.4 - Hacking the Floormapper Demo ..138

7.4 - Moving On..140

CHAPTER 8: CASE STUDY: THE STARFIELD DEMO .. 142

8.1 - Organization of the Demo ..142
8.1.1 - Data Structures ..143

8.1.1.1 - The Star List ..143
8.1.1.2 - The Rest of the Program ...144

8.1.2 - Algorithms and Logic..145
8.1.2.1 - Initialization ..146
8.1.2.2 - Anatomy of the Video Kernel...149

8.2 - Conclusion ..156

CHAPTER 9: CASE STUDY: RACING ENGINE DEMO.. 157

9.1 - Data Structures ...158

9.2 - The Sky Background and Mountain Rage..158
9.2.1 - The Mountain Height Table..158
9.2.2 - Another Approach to Lookup Tables..160
9.2.3 - Drawing the Background..160

9.3 - Drawing the Race Track ...162
9.3.1 - A Procedural Race Track ...162
9.3.2 - Adding Perspective to the Track ..163
9.3.3 - Making Turns..164

9.3.3.1 - Deforming the Racetrack...164
9.3.3.2 - Generating the Curve Data..166

9.3.4 - Summary ..167

Table of Contents

XGameStation™ Micro Edition User Guide
vii

9.4 - Player Input ...167

9.5 - The BCD Speedometer ...168

9.6 - Expanding the Demo ..171

9.7 - Summary..171

CHAPTER 10: THE SX PROGRAMMING API... 172

10.1 - Programming Architecture ..172
10.1.1 - The User-Level Interface (Highest Level) ..174
10.1.2 - The SX Programming API (Middle Level) ..174
10.1.3 - The Programmer Unit Firmware (Lowest Level) ..174
10.1.4 - The Full Communication Process ..175

10.1.4.1 - Writing Data ...175
10.1.4.2 - Reading Data...175

10.2 - Using the Library ..175

10.3 - Library Organization...176
10.3.1 - Loading Programs into the API ..176
10.3.2 - Writing Programs to the Physical SX52 ...177
10.3.3 - Reading Programs from the Physical SX52...178

10.4 - Library Reference ...179
10.4.1 - Globals ...179
10.4.2 - Data Types ...180

10.4.2.1 - The Programmer Unit Response Packet...180
10.4.3 - The SX_DEVICE Structure ...180
10.4.4 - Constants ...181
10.4.5 - Functions..181
10.4.6 - Macros..184

10.5 - Complete Library Demos ...185
10.5.1 - Programming the SX52..185
10.5.2 - Reading the SX52 ..188

10.6 - The Programmer Unit Firmware Source Code...190

CHAPTER 11: REPROGRAMMING THE PROGRAMMER UNIT FIRMWARE......... 191

11.1 - Reprogramming the SX20..191

Table of Contents

XGameStation™ Micro Edition User Guide
viii

11.2 - An Example ...193
11.2.1 - Reprogramming the Firmware ...193

11.2.1.1 - Step 1 – Connecting the SX-Key to the SX20 Programming Port193
11.2.1.2 - Step 2 – Load the New SX20 Firmware Program ...193
11.2.1.3 - Step 3 – Program the SX20...194

11.2.2 - Restoring the Programmer Unit Firmware ...194
11.2.2.1 - Step 1 – Load the Programmer Unit Firmware..194
11.2.2.2 - Step 2 – Test the Programmer Unit...194

CHAPTER 12: ADVANCED GRAPHICS: TILE GRAPHICS ENGINE....................... 195

12.1 - Brief Overview of XGS ME Programming...195

12.2 - Different Approaches to Game Graphics ...195
12.2.1 - Vector Graphics..195
12.2.2 - Framebuffer/Pixel Graphics ...196

12.2.2.1 - Framebuffer Memory Issues..197
12.2.2.2 - Framebuffer Speed Issues ..197

12.2.3 - Tile/Character-Based Graphics..198
12.2.4 - Summary ..199

12.3 - Tile Graphics on the XGS ME ..199

12.4 - Using the XGS ME Tile Graphics Engine..200
12.4.1 - Source Code Structure & Organization..201
12.4.2 - Writing Client Programs ...201

12.4.2.1 - Initializing the Client Program..202
12.4.2.2 - Implementing Client Program Game Logic ...202

12.4.3 - Framebuffers ..203
12.4.3.1 - Multiple Framebuffers..204

12.4.4 - Tiles & Bitmaps ..205
12.4.5 - Maps & Tile Attribute Tables ..207

12.4.5.1 - Tile Attribute Tables...207
12.4.5.2 - Maps ..209

12.4.6 - Designing a Game Loop...210
12.4.6.1 - Initializing the Game..210
12.4.6.2 - Updating the Game ...211
12.4.6.3 - Drawing Complex Graphics over Multiple Frames..212

12.5 - Case Study: The Shooter Demo ..214
12.5.1 - The Graphics..215
12.5.2 - Data Structures ..216
12.5.3 - Initialization...216
12.5.4 - Updating the Game ..218

12.5.4.1 - Erasing the Game Objects ..218

Table of Contents

XGameStation™ Micro Edition User Guide
ix

12.5.4.2 - Handling Player Input ..219
12.5.5 - Conclusion..222

12.6 - Case Study: XGS Bros. ..223
12.6.1 - Data Structures ..224
12.6.2 - Initializing the Game...225
12.6.3 - Updating the Game ..225

12.6.3.1 - Collision Detection...226
12.6.3.2 - Gravity-Based Jumping ...228
12.6.3.3 - The Enemy ..230

12.6.4 - Conclusion..233

12.7 - Case Study: Venture...233
12.7.1 - Overview ..235

12.7.1.1 - The Game Environment ..235
12.7.1.2 - The Object of the Game ..236

12.7.2 - Data Structures ..237
12.7.3 - Initializing the Game...238
12.7.4 - The World Map...239
12.7.5 - Enemy Movement ..242
12.7.6 - Color Effects...243
12.7.7 - Conclusion..244

APPENDIX A: SX52 INSTRUCTION SET REFERENCE……………………………….245

APPENDIX B: XGS ME SCHEMATIC REFERENCE……………………………………251

Chapter 1: Welcome!

XGameStation™ Micro Edition User Guide
1

Chapter 1: Welcome!
This chapter will quickly bring you up to speed with the XGameStation Micro Edition and contains the
most important information to review after opening the package. Please carefully read the following two
sections, Package Contents and Important Safety Information.

1.1 - Package Contents
The XGameStation Micro Edition is a complete, ready-to-use package that comes with everything you
need to get started (as seen in Figure 1.1).

Figure 1.1 – The XGameStation Micro Edition Package.

The following items should be included in-box:

• (1) XGameStation Micro Edition console

• (1) Power Supply (United States or International)

• (1) Two-Lead RCA Cable for A/V connection to any standard television

• (1) DB25 Male-to-Male Parallel Cable for connection to any PC for programming

• (1) Atari-Compatible Joystick or Gamepad

• (1) CD-ROM containing eBooks, utilities and tools

Chapter 1: Welcome!

XGameStation™ Micro Edition User Guide
2

• (1) QuickStart Guide illustrating the basic operation of the XGS ME

1.1.1 - How Your Package May Differ

The XGameStation Micro Edition package can be customized with a number of options that may result in
your package differing slightly from the list above, such as the inclusion of one or more of the following:

• (1) Parallax, Inc. SX-Key programmer

• (1) Extra Atari-Compatible Joystick or Gamepad

• (1) Programming the SX Microcontroller: A Complete Guide book by Günther Daubach

1.2 - Important Safety Information!
This section contains important safety information and precautions for setting up and working with the
XGameStation Micro Edition.

1.2.1 - Place the XGS ME in Safe Locations Only

Only place the XGS ME on sturdy, stable surfaces. Do not place the XGS ME close to edges and be
especially mindful of cords, wires and cables connected to the console. These can easily snag on nearby
objects and cause damage to the system.

1.2.2 - Be Careful of XGS ME Cords and Cables

Always be aware of how cords and cables are laid out and where. Avoid taut, tense connections and
never stretch a cord or cable to its maximum length. Keep small children and pets away from the XGS ME
and its cords and cables at all times. Always discontinue use of damaged cords and or immediately to
prevent damage to connected devices.

1.2.3 - Connecting Cords and Cables to the XGS ME Safely

When connecting any cable or controller cord to any of the ports on the XGS ME, plug into the port gently
but firmly, and always support the port with your other hand to ensure it is not pushed too hard in one
direction. Failing to do so may lead to ports breaking or partially losing their connection to the XGS ME
board. Remember, the XGS ME is a hobbyist unit and ports and connectors are not strongly supported.

Chapter 1: Welcome!

XGameStation™ Micro Edition User Guide
3

1.2.4 - Carpet and Other Sources of Electro-Static Discharge (ESD)

Electro-Static Discharge (ESD) can potentially damage electrical devices such as the XGS ME, and the
exposed design of the XGS ME board makes it more susceptible than standard consumer products.
Please keep the following anti-static guidelines in mind at all times to prevent your XGS ME console from
ESD damage:

• Do not place the XGS ME directly on carpet. Despite the standoffs in its four corners, it is not meant
to be stored or used for extended periods on carpet.

• Do not drag your feet on carpet while handling the XGS ME. This creates static electricity which can
discharge into the XGS ME unit.

• If possible, before touching the XGS ME, try touching a piece of metal to discharge any static
electricity accumulated on your body or clothing.

1.2.5 - Do Not Expose the XGS ME to Liquids or Moisture

Even though the XGS ME is a digital device powered by low voltage, any source of liquid or moisture can
be damaging to the electronics and cause internal shorts. Therefore, keep the XGS ME unit away from all
sources of water, moisture, or any liquid containers that may spill.

Do not attempt to clean the XGS ME with liquid cleaners, solvents or aerosols.

1.2.6 - When to Unplug the XGS ME

Unplug the XGS ME during lighting storms or when not in use for long periods. Do not leave the XGS ME
powered-up and unattended for long periods.

1.2.7 - Overloading Extension Cords, Wall outlets and Receptacles

The XGS ME consumes a meager 2-5 watts. Nevertheless, do not exceed the stated ratings of cords or
receptacles.

1.2.8 - Only Use XGS ME-compatible Power Supplies

The XGS ME is designed only for use with the power supplies it comes with (US or International), as well
as any power supply meeting the following specifications:

• 9V DC (does not need to be regulated).

• 500 mA (or greater).

Chapter 1: Welcome!

XGameStation™ Micro Edition User Guide
4

• 2.1mm male power jack with ring ground, tip positive.

Failure to use the proper power supply may cause the machine to overheat, burn out or be otherwise
damaged or destroyed.

1.2.9 - Important Heat Sink Information

Two heat sinks are attached to the XGS ME; one underneath the 5V regulator, located in the upper-left
corner of the board, and the other on top of the SX52 processor located in the center of the board. See
Figure 1.2 for a picture. Both of these heat sinks are required for safe operation of the XGS ME console.

Figure 1.2 – The two XGS ME heat sinks.

1.2.10 - Heat Sinks can be Very Hot

Heat sinks help cool sensitive components by increasing the surface area for heat to dissipate through
into the surrounding air. Naturally, they are hot to the touch, and flammable or combustible items should

Chapter 1: Welcome!

XGameStation™ Micro Edition User Guide
5

be not be left in contact with them. While the XGS ME’s heat sinks should never reach temperature high
enough to burn skin, they may be uncomfortably hot after extended use and contact should be avoided.

1.2.11 - If The Processor Heat Sink Detaches

If the XGS ME arrives without the main processor’s heat sink fully attached, or the heat sink is somehow
detached from the processor at any time, turn the console off immediately (if it is not already) and perform
the following steps:

1. Apply a dab of RTV 108 silicon adhesive (or another silicon glue with similar properties) to the top of
the processor as shown in Figure 1.3.

2. Gently but firmly press the heat sink onto the processor, taking care to keep the heat sink centered on
the processor and within the edge connectors surrounding the processor. Hold the heat sink in place
for 30-60 seconds.

3. Leave the console in a safe place for 24 hours to allow the glue to dry and cure properly.

Figure 1.3 – Applying silicon glue to the processor to reattach the heat sink.

WARNING! The XGS ME will function properly without the heat sink, but the lifespan of the system
may be considerably reduced.

1.2.12 - Warranty Information

The XGS ME does not have a warranty of any kind due to its hands-on, hobbyist-oriented nature. Unlike
consumer electronics, the XGS ME is designed for hands-on experimentation, and it is always possible

Chapter 1: Welcome!

XGameStation™ Micro Edition User Guide
6

to damage or destroy the system through experiment-related accidents. XGS ME users are always
responsible for their own actions and the actions of anyone allowed to use the device.

1.3 - What is the XGameStation Micro Edition?
The XGameStation Micro Edition (XGS ME) is a retro-inspired educational video game console designed
specifically for both hardware and software hackers. The system is powered by an 80 MIP RISC
processor, has direct raster controlled graphics, 3-channel sound, a built-in programmer, and is capable
of outputting both NTSC and PAL composite video. Additionally, to round out the retro-roots of the XGS,
it's directly compatible with vintage Atari 2600 joysticks as well as custom-designed game pads.

Figure 1.4 – The XGameStation Micro Edition.

The purpose of the XGameStation Micro Edition (see Figure 1.4) is to teach the principals of digital
electrical engineering, computer architecture, assembly-language programming and hardware device
interfacing in a new way. Everything is taught consistently from the perspective of video game console
development, keeping you engaged and entertained as you learn, and making the real-world application
and relevance of each lesson crystal clear.

1.3.1 - System Overview

The XGS ME console is an exposed printed circuit board (PCB) with numerous subsystems visible on its
surface. Figure 1.5 depicts the XGS ME with each of its primary subsystems highlighted.

Chapter 1: Welcome!

XGameStation™ Micro Edition User Guide
7

Also note in Figure 1.5 that the sound and video oscillator chips may come with a colored dot to indicate
their speeds. The sound oscillator may have a yellow dot indicating it runs at 5.736 MHz, or “5.736” may
actually be printed on it. The NTSC color burst crystal may have a blue dot or “3.579545” on it. The PAL
color burst crystal may have a red dot or “4.43” on it. In all cases the colored dot is placed over the
alignment dot, which allows you to insert the chip into its socket with the correct orientation. For more
information on socketing oscillators with the correct orientation, see Chapter 5 – Troubleshooting.

Chapter 1: Welcome!

XGameStation™ Micro Edition User Guide
8

Figure 1.5 – The XGameStation Micro Edition’s Primary Subsystems, along with other
annotations.

The following is a brief description of each subsystem of the XGameStation. Don’t worry if some of this
doesn’t make sense at first; each system is explained in complete detail in the accompanying eBook,
Design Your Own Video Game Console:

• Power
Responsible for regulating the console’s power supply and producing the different voltages needed
by various components.

Chapter 1: Welcome!

XGameStation™ Micro Edition User Guide
9

• Video
An array of chips designed to assist programs with the generation of standard television signals to
display onscreen graphics.

• Sound
An audio system based around the ROHM sound chip to deliver asynchronous sound output.

• CPU (SX52)
The processing heart of the console, an SX52 microcontroller running at 80 MIPS (millions of
instructions per second).

• SRAM
128K of off-chip RAM to store data and other program assets.

• Onboard Programmer
A slave SX20 microcontroller that communicates with the main SX52 to read and write programs to
and from its program memory, modify and read the configuration registers, and more. The
programmer communicates with a development PC via the parallel port at the rear of the board.

• I/O Interface
A handful of chips and two DB9 connectors that provide an interface for up to two Atari-compatible
controllers (joysticks, gamepads, etc.)

• Expansion Port
A 30-pin expansion bus that accepts XGameStation Expansion Cards. Allows the connection of
external devices and hardware to interface with the XGS ME console.

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
10

Chapter 2: Quick Start Guides
The following guides explain the main functionality of the XGameStation Micro Edition in a simple,
tutorial-style format and are designed to get you up and running as quickly and easily as possible. If you
have any trouble with any of these guides, refer to the Common Problems and Issues section, as well
as the Troubleshooting chapter near the end of this user guide.

2.1 - Guide 1 - How to Run the Pre-Loaded Demo
When your XGS ME arrives, it’s already pre-programmed with a demo so you can verify the system
works, as well as get an immediate sense of what the XGS ME can do as soon as you boot the machine.
This guide will help you set up and connect the hardware for the maiden boot-up.

2.1.1.1 - Step 1 – Power up the System

First, make sure the power switch (near the controller ports on the front of the board) is set to Off so we
can be sure the system won’t get power until we’re ready. Next, insert the jack-end of the power supply in
the XGameStation’s power port (near to the parallel port on the back of the board) and plug the power
supply into a wall outlet. See Figure 2.1.

Figure 2.1 – Powering up the XGS ME.

2.1.1.2 - Step 2 – Connect the System to a Television

Find the two-leaded RCA cable (depicted in Figure 2.2). The cable’s ends may be red and white, yellow
and white, or some similar pair of colors. These colors do not matter. Both wires are internally identical,
so all that matters is that they correspond on the XGS and TV ends.

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
11

Figure 2.2 – Connecting the XGS ME to a Television.

Connect one color wire (it doesn’t matter which) to the Audio port on the XGameStation. Connect the
other end of the cable (using the same color end) to the Audio input port on your television (choose either
the white or yellow port—it doesn’t matter which).

Connect the other color wire to the Video port on the XGameStation. Connect the other end of this wire to
the Video input port on your television (the red port).

For example, if you your wire tips are red and white, connect the red line to the video ports on the XGS
ME and TV, and connect the white line to the audio ports.

Turn on your television. If your TV has multiple A/V inputs, make sure to select the one you used.

2.1.1.3 - Step 3 – Connect the Controller

Connect your controller to port 1 on the XGS ME console (the port on the left-hand side). See Figure 2.3

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
12

Figure 2.3 – Connecting a Controller to the XGS ME.

Take care to press the controller in firmly but gently, and make sure to hold the port itself with the other
hand to stabilize.

2.1.1.4 - Step 4 – Turn it On!

Flip the power switch to the On position and press the Reset button (depicted in Figure 2.4). While
pressing Reset is not completely necessary in all cases, it is a good practice to get into as it ensures that
your XGS ME console is always running off a fresh reset.

Figure 2.4 – The XGS ME Reset Button.

Your XGameStation Micro Edition comes pre-programmed, which means you should see something cool
as soon as you start it up!

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
13

2.1.1.5 - Common Problems and Issues

The following problems and issues are commonly experienced when starting up an XGS ME console for
the first time.

• No Video
If you aren’t seeing anything on your television, first verify that both leads on the A/V cable are
connected snugly on both the XGameStation and your TV. Also make sure that the leads are in the
right ports, as described above. Lastly, make sure that your television is both turned on and set to the
proper A/V input source.

• No Audio
If you can’t hear anything, the problem could be either the XGS or your TV. First make sure the
volume is turned up on your XGameStation by adjusting the potentiometer marked Volume. Next,
make sure the volume is turned up to an audible level on your TV.

• Fuzzy/Blurry/Noisy Video Output
Depending on your TV, the brightness and saturation settings on your XGameStation may produce a
distorted or noisy image. Adjust the potentiometers marked Brightness and Saturation (see Figure
2.5) until you reach the optimal settings for your television. Remember, all TVs are different, and
settings that may look great for one person may look awful for another. Especially bad settings may
even cause the image to distort and shear, so don’t panic if you see this!

Figure 2.5 – The Brightness and Saturation potentiometers.

If you’re still having trouble, refer to the Troubleshooting chapter later in this user guide.

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
14

2.2 - Guide 2 – How to Load an Example Program onto the
XGS ME

NOTE Before attempting this tutorial, make sure you have set up your XGameStation as
outlined in Guide 1 – How to Run the Pre-Loaded Demo.

This guide is split up into two parts. One illustrates how a program is loaded onto the XGS ME using the
standard, built-in programmer and the XGS Micro Studio IDE. The other covers the same process using
the external SX-Key programmer and the SX-Key IDE. If your XGameStation package does not include
the SX-Key programmer, you can ignore this tutorial. Otherwise, you may use whichever programmer you
like.

2.2.1 - Using the Built-in Programmer and XGS Micro Studio IDE

This version of the guide uses the built-in programmer and the XGS Micro Studio IDE. All XGameStation
Micro Edition packages can be used with this tutorial.

2.2.1.1 - Step 1 – Set up the XGameStation Console

Again, make sure to follow the steps outlined in Guide 1 – How to Run the Pre-Loaded Demo before
proceeding. This will ensure that your XGS ME console is ready to program and play.

2.2.1.2 - Step 2 – Connect the XGS ME to the Development PC

The XGS ME and the development PC communicate via the parallel port. Take the following steps to
properly connect the XGS ME to the PC:

1. Connect one end of the included male-to-male DB25 parallel cable to the XGameStation, and
connect the other end to the parallel port on the PC.

2. If your PC has multiple parallel ports, take note of the port you used, as it will be important later on
(you will be using LPT1 in most cases).

3. After connecting the parallel port, locate the switch marked SYSMODE near the rear of the board
next to the parallel port (depicted in Figure 2.6). Set the switch to PGM mode.

4. Turn on the XGS ME console if it is not on already.

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
15

Figure 2.6 – The SYSMODE Switch.

NOTE

Realistically, you may not have your TV and development PC close enough for both to
be connected at the same time. If this is the case, you will need to disconnect the RCA
A/V cables from the XGameStation (leave them in the TV) and unplug the power supply
from the wall outlet so it may be moved close enough to your development PC. Refer to
Guide 1 again if necessary when reconnecting the XGS ME to the TV at the end of this
guide.

2.2.1.3 - Step 3 – Install the XGS Micro Studio IDE and Example Programs on the
PC

Take following steps to install the XGS Micro Studio IDE on your PC:

5. Insert the XGS ME Software CD in your PC’s CD-ROM drive.

6. Double-click My Computer.

7. Double-click the icon corresponding to the CD-ROM drive into which you inserted the disc.

8. In the root directory, double-click XGS_Micro_Studio_Setup.exe.

9. Follow the on-screen instructions. Use the default settings provided by the installer unless you have
specific needs to do otherwise.

10. Drag the Demos folder to somewhere on your hard drive. We strongly recommend a directory as
close to the root as possible, as it makes things easier on the IDE and minimizes the chances of
error.

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
16

TIP
If you prefer, you may avoid the XGS Micro Studio installer and instead drag the
XGS_Micro_Studio folder to your hard drive. The program will then run out of this
directory.

2.2.1.4 - Step 4 – Launch the XGS Micro Studio IDE

If the installer did not cause the XGS Micro Studio IDE program to launch, do so yourself:

1. Click the Start menu.

2. Click Programs (or All Programs, depending on your version of Windows) and find XGS Micro
Studio. Run the program. You should see a screen resembling the screenshot in Figure 2.7.

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
17

Figure 2.7 – The XGS Micro Studio IDE.

2.2.1.5 - Step 5 – Configure the XGS Micro Studio IDE

Before you can use the IDE to program the XGS ME, you must ensure that it is configured to recognize
the XGS ME via the parallel port:

1. Under the Build menu, click Tool Settings… or press Ctrl+T. The Configure Tools window should
appear.

2. Click the Hardware tab (as depicted in Figure 2.8).

3. In the Parallel Port box, select the LPT port (LPT1-LPT3) that corresponds to the physical port to
which you connected the parallel cable.

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
18

Figure 2.8 – The Hardware Tab of the Configure Tools Window.

2.2.1.6 - Step 6 – Load and Program a Game Demo

Next, you’ll need to load the assembly language source code of an XGS ME program. This will be
assembled and programmed onto the machine in a moment.

1. Under the File menu, select Open… or click Ctrl+O.

2. In the Open window, find the Demos directory you dragged onto your hard drive in the previous step.
Navigate to the NTSC\Racer subdirectory and open Racer.src. The source code to the racing engine
demo should appear in a new window. If you are using the PAL version of the XGameStation, open
any demo from the PAL subdirectory in place of the racer.

3. Under the Build menu, click Program and Run or press F5. A window should appear indicating the
progress of the program as it is written to the XGS ME console. When the programming is complete,
click OK on the dialog box that appears.

4. Set the SYSMODE switch on the XGS ME board to RUN mode. Press the reset button to ensure the
system is running off a fresh reset.

If everything was done correctly, you should see the racing demo onscreen, or your chosen PAL demo if
you are using the PAL version.

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
19

NOTE If you disconnected the XGS ME from the television set to connect it to the PC, make
sure to re-connect it to the TV at this time.

2.2.1.7 - Common Problems and Issues

The following are common problems and issues that arise when programming the XGS ME:

• Errors When Attempting to Program
If errors occur when attempting to program the XGS ME (after selecting Program and Run from the
Build menu), first make sure that the parallel cable is snugly connected to both the XGS ME and the
PC. Next, ensure the proper parallel port is selected by XGS Micro Studio as specified above. Lastly,
make sure the XGS ME console is set to PGM mode by the SYSMODE switch.

• Game or Demo will not Run after Programming
In addition to making sure the XGameStation is properly connected to the TV as outlined in Guide 1,
make sure the SYSMODE switch is set to RUN mode after the programming process is complete.

If you’re still having trouble, refer to the Troubleshooting chapter later in this user guide.

2.2.2 - Using the SX-Key

This version of the guide uses the alternative SX-Key programmer and IDE from Parallax, Inc. The SX-
Key is not part of the standard XGS ME package and can be ignored if you do not have one.

2.2.2.1 - Step 1 – Set up the XGameStation Console

Again, make sure to follow the steps outlined in Guide 1 – How to Run the Pre-Loaded Demo before
proceeding. This will ensure that your XGS ME console is ready to program and play.

2.2.2.2 - Step 2 – Connect the XGS ME to the Development PC

The XGS ME and the development PC communicate via the serial port when using the SX-Key. Take the
following steps to properly connect the XGS ME to the PC:

1. Attach the SX-Key to the male end of a DB9 Male-to-Female Straight-Through Serial cable (not
included). Attach the female end to the PC.

2. Locate the switch marked SYSMODE near the rear of the board next to the parallel port (depicted in
Figure 2.9). Set the switch to KEY mode.

3. Turn on the XGS ME console if it is not on already.

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
20

Figure 2.9 – The SYSMODE Switch.

NOTE

Realistically, you may not have your TV and development PC close enough for both to
be connected at the same time. If this is the case, you will need to disconnect the RCA
A/V cables from the XGameStation (leave them in the TV) and unplug the power supply
from the wall outlet so it may be moved close enough to your development PC. Refer to
Guide 1 again if necessary when reconnecting the XGS ME to the TV at the end of this
guide.

2.2.2.3 - Step 3 – Install the SX-Key IDE and Example Programs on the PC

Take following steps to install the XGS Micro Studio IDE on your PC:

1. Insert the XGS ME Software CD in your PC’s CD-ROM drive.

2. Double-click My Computer.

3. Double-click the icon corresponding to the CD-ROM drive into which you inserted the disc.

4. Open the SX_Key_IDE directory and double-click SX_Key_IDE_Setup.exe.

5. Follow the on-screen instructions. Use the default settings provided by the installer unless you have
specific needs to do otherwise.

6. Drag the Demos folder to somewhere on your hard drive. We strongly recommend a directory as
close to the root as possible, as it makes things easier on the IDE and minimizes the chances of
error.

2.2.2.4 - Step 4 – Launch the SX-Key IDE

If the installer did not cause the XGS Micro Studio IDE program to launch, do so yourself:

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
21

1. Click the Start menu.

2. Click Programs (or All Programs, depending on your version of Windows) and find Parallax, Inc.
Run the program.

2.2.2.5 - Step 5 – Configure the SX-Key IDE

Before you can use the IDE to program the XGS ME, you must ensure that it is configured to recognize
the XGS ME via the serial port:

1. Under the Run menu, click Configure… or press Ctrl+U. The Configure window should appear (see
Figure 2.10).

2. In the Serial Port box, select the COM port (COM1-COM4) that corresponds to the physical port to
which you connected the SX-Key cable.

Figure 2.10 – The SX-Key Configure Window

2.2.2.6 - Step 6 – Load and Program a Game Demo

Next, you’ll need to load the assembly language source code of an XGS ME program. This will be
assembled and programmed onto the machine in a moment.

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
22

1. Under the File menu, select Open… or click Ctrl+O.

2. In the Open window, find the Demos directory you dragged onto your hard drive in the previous step.
Navigate to the NTSC\Racer subdirectory and open Racer.src. The source code to the racing engine
demo should appear in a new window. If you are using the PAL version of the XGameStation, open
any demo from the PAL subdirectory in place of the racer.

3. Under the Run menu, select Run or press Ctrl+R. A window should appear indicating the progress of
the program as it is written to the XGS ME console. When the programming is complete, click OK on
the dialog box that appears.

4. Set the SYSMODE switch on the XGS ME board to RUN mode. Press the reset button to ensure the
system is running off a fresh reset.

If everything was was done correctly, you should see the racing demo onscreen, or your chosen PAL
demo if you are using the PAL version.

NOTE If you disconnected the XGS ME from the television set to connect it to the PC, make
sure to re-connect it to the TV at this time.

2.2.2.7 - Common Problems and Issues

The following are common problems and issues that arise when programming the XGS ME:

• Errors When Attempting to Program
If errors occur when attempting to program the XGS ME (after selecting Program from the Run
menu), first make sure that the SX-Key cable is snugly connected to both the XGS ME and the PC,
and that the SX-Key itself is connected snugly to cable. Next, ensure the proper serial port is selected
by XGS Micro Studio as specified above. Lastly, make sure the XGS ME console is set to KEY mode
by the SYSMODE switch.

• Game or Demo will not Run after Programming
In addition to making sure the XGameStation is properly connected to the TV as outlined in Guide 1 –
How to Play a Game or Run a Demo, make sure the SYSMODE switch is set to RUN mode after
the programming process is complete.

If you’re still having trouble, refer to the Troubleshooting chapter later in this user guide.

2.3 - Guide 3 – How to Write a Program for the XGS ME
This guide is split up into two parts. One illustrates how a program is written and programmed onto the
XGS ME using the standard, built-in programmer and the XGS Micro Studio IDE. The other covers the
same process using the external SX-Key programmer and the SX-Key IDE. If your XGameStation

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
23

package does not include the SX-Key programmer, you can ignore this second tutorial. Otherwise, you
may use whichever programmer you like.

NOTE
Before attempting this tutorial, make sure you have set up your XGameStation as
outlined in Guide 1 – How to Play a Game or Run a Demo. Then make sure you have
followed at least one version of Guide 2 - How to Load an Example Program onto the
XGS ME and have successfully programmed and run the game demo.

2.3.1 - Using the Built-in Programmer and XGS Micro Studio IDE

This version of the guide uses the built-in programmer and the XGS Micro Studio IDE. All XGameStation
Micro Edition packages can be used with this tutorial.

2.3.1.1 - Step 1 – Set up the XGameStation Console for Programming

Again, make sure to read both Guides 1 and 2 before attempting to complete this guide. Once you have
connected the XGS ME to the PC, and installed and configured the IDE, you are ready to continue.

2.3.1.2 - Step 2 – Create a new Document

Launch XGS Micro Studio IDE and select New from the File menu or press Ctrl+N. A blank document
window should appear.

2.3.1.3 - Step 3 – Enter a Demo Program

Enter the following code into the document window:

; **** Directives

DEVICE SX52, OSCHS3, IFBD, XTLBUFD
RESET main
FREQ 80_000_000

; **** Variables

ORG $30
luma DS 1

; **** Main program

main

 ; Initialize
 MOV RE, #%00000000

MOV !RE, #%00000000
 BANK #$30

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
24

 ; Generate TV signal
loop
 INC luma
 REPT 7
 NOP
 ENDR
 MOV RE, luma
 JMP loop

Don’t worry if it doesn’t make sense yet. All that matters for now is that you can enter the source code as
you would any other editor (as seen in Figure 2.11).

Figure 2.11 – Entering the example code in XGS Micro Studio.

Once the code is entered, select Program and Run (F5) from the Build menu as you did in Guide 2. If
the code was entered correctly, the progress window should appear as it did before and the assembled
program should be written to the XGS ME. Once finished, press OK in the dialog that appears.

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
25

NOTE If you disconnected the XGS ME from the television set in order to connect it to the PC,
make sure to re-connect it to the TV at this time.

Your results will vary, but essentially this program generates a very unstable television signal that may
look like anything from crisp color bars to erratic patterns of color and noise.

2.3.1.4 - Syntax Errors

You may find that XGS Micro Studio cannot assemble the code you entered. If this is the case, the code
must have been entered incorrectly. Try to find the error and reenter the problematic code.

2.3.1.5 - Common Problems and Issues

The following are common problems and issues that arise when writing programs for the XGS ME:

• Syntax Errors
Syntax errors occur when code is entered that is not a valid part of SX52 assembly language. These
usually are the result of typos, and as said above, can be fixed by checking and reentering the invalid
code.

• No Video
If you aren’t getting any output, it could either be due to a bad connection between the XGS ME and
the television (outlined in detail in Guide 1), or an error with the code that is a valid part of SX52
assembly language, but simply does not produce a video signal as it should. Once again, check the
code listing above if anything does not seem to be working. Lastly, remember also that all TV’s are
different and this particular program is not stable from one TV to the next by nature.

If you’re still having trouble, refer to the Troubleshooting chapter later in this user guide.

2.3.2 - Using the SX-Key

This version of the guide uses the SX-Key programmer and the SX-Key IDE. All XGameStation Micro
Edition packages can be used with this tutorial.

2.3.2.1 - Step 1 – Set up the XGameStation Console for Programming

Again, make sure to read both Guides 1 and 2 before attempting to complete this guide. Once you have
connected the XGS ME to the PC, and installed and configured the IDE, you are ready to continue.

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
26

2.3.2.2 - Step 2 – Enter a Demo Program

Launch the SX-Key IDE. A new document window will already be open for you. Enter the following code
into the document window:

; **** Directives

DEVICE SX52, OSCHS3, IFBD, XTLBUFD
RESET main
FREQ 80_000_000

; **** Variables

ORG $30
luma DS 1

; **** Main program

main

 ; Initialize
 MOV RE, #%00000000
MOV !RE, #%00000000
 BANK #$30

 ; Generate TV signal
loop
 INC luma
 REPT 7
 NOP
 ENDR
 MOV RE, luma
 JMP loop

Don’t worry if it doesn’t make sense yet. All that matters for now is that you can enter the source code as
you would any other editor (as seen in Figure 2.12).

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
27

Figure 2.12 – Entering the example code in SX-Key.

Once the code is entered, select Run (Ctrl+R) from the Run menu as you did in Guide 2. If the code was
entered correctly, the progress window should appear as it did before and the assembled program should
be written to the XGS ME. Once finished, press OK in the dialog that appears.

NOTE If you disconnected the XGS ME from the television set to connect it to the PC, make
sure to re-connect it to the TV at this time.

Your results will vary, but essentially this program generates a very unstable television signal that may
look like anything from crisp color bars to erratic patterns of color and noise.

2.3.2.3 - Syntax Errors

You may find that XGS Micro Studio cannot assemble the code you entered. If this is the case, the code
must have been entered incorrectly. Try to find the error and reenter the problematic code.

Chapter 2: Quick Start Guides

XGameStation™ Micro Edition User Guide
28

2.3.2.4 - Common Problems and Issues

The following are common problems and issues that arise when writing programs for the XGS ME:

• Syntax Errors
Syntax errors occur when code is entered that is not a valid part of SX52 assembly language. These
usually are the result of typos, and as said above, can be fixed by checking and reentering the invalid
code.

• No Video
If you aren’t getting any output, it could either be due to a bad connection between the XGS ME and
the television (outlined in detail in Guide 1), or an error with the code that is a valid part of SX52
assembly language, but simply does not produce a video signal as it should. Once again, check the
code listing above if anything does not seem to be working. Lastly, remember also that all TV’s are
different and this particular program is not stable from one TV to the next by nature.

If you’re still having trouble, refer to the Troubleshooting chapter later in this user guide.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
29

Chapter 3: Using XGS Micro Studio
XGS Micro Studio is an IDE developed exclusively for assembly language development on the
XGameStation Micro Edition. It supports standard tools for editing and assembling source code, as well
as programming the results onto the XGS ME console via the parallel port. This chapter is a complete
overview of how XGS Micro Studio is used.

3.1 - Installing the XGS Micro Studio Software
If you haven’t already done so, you’ll of course need to install XGS Micro Studio before you can use it.

See Guide 2 – How to Load an Example Program onto the XGS ME for step-by-step instructions for
installing and configuring XGS Micro Studio.

3.2 - Elements of the Interface
XGS Micro Studio is designed to be familiar to users of existing IDEs. Figure 3.1 depicts the layout of the
IDE as it usually appears.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
30

Figure 3.1 – The XGS Micro Studio Interface.

The program is split up into five main areas:

• The Toolbar

• The Document Selector

• The Document Area

• The Output Window

• The Status Bar

The following sections explain these areas in full detail.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
31

3.2.1 - The Toolbar

The toolbar (seen in Figure 3.2) encapsulates most of XGS Micro Studio’s main functionality in easy-to-
use buttons.

Figure 3.2 – The XGS Micro Studio Toolbar.

Use the toolbar to create, open and save documents, invoke built-in tools like the Real-Time SX Interface
and the Instruction Browser, and assemble, write and view listings of programs.

The following is a brief explanation of each toolbar button:

• New (Ctrl+N)
Creates a new document.

• Open (Ctrl+O)
Opens a document for editing.

• Save (Ctrl+S)
Saves the currently selected document.

• Print (Ctrl+P)
Displays the print dialog box for the currently selected document.

• Undo (Ctrl+Z)
Undos the last action in the selected document. Undo is good for multiple levels, allowing entire
sequences of modifications to be undone.

• Redo (Ctrl+Y)
Redos the last action undone in the selected document. Redo is good for multiple levels, allowing
entire sequences of modifications to be undone.

• Cut (Ctrl+X)
Cuts the current selection from the selected document to the clipboard.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
32

• Copy (Ctrl+C)
Copys the current selection in the selected document to the clipboard.

• Paste (Ctrl+V)
Pastes text content in the clipboard to the currently selected document.

• Program and Run (F5)
Assembles the currently selected document and program the XGS Micro with it. The results of the
assembly process are appear in the output window.

• Assemble (F7)
Assembles the currently selected document. The results are printed in the output window.

• Generate Listing (Ctrl+L)
Generates an annotated program listing of the currently selected document in the document's
directory and open it.

• Configure Tools (Ctrl+T)
Displays the tool configuration window.

• Real-Time SX Interface (Ctrl+I)
Displays the Real-Time SX Interface tool.

• Instruction Browser (Ctrl+B)
Displays the Instruction Browser tool.

• Find (Ctrl+F)
Displays the Find dialog, allowing the currently selected document to be searched.

• Replace (Ctrl+H)
Displays the Replace dialog, allowing the currently selected document to be searched for text strings
to replace with a replacement string.

• Output Window
Toggles the output window.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
33

• Clear Document Selector

• Clears the document selector’s contents.

• Document Selector
Toggles the document selector.

• Help (F1)
Displays the XGS Micro Studio help system.

3.2.2 - The Document Selector

The document selector, as seen in Figure 3.3, lists the currently open documents.

Figure 3.3 – The XGS Micro Studio Document Selector.

Note the File View tab (Figure 3.4), which provides a built-in view to the underlying file system. Double
click any file in the File View tab to instantly open it in XGS Micro Studio.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
34

Figure 3.4 – The Document Selector’s File View Tab.

Click a file in the document selector to bring it to the foreground. As documents are opened and closed,
the document selector automatically updates. When XGS Micro Studio closes, the document selector
remembers the last files opened. When XGS Micro Studio is re-opened, the last files in the selector are
automatically re-opened so you can resume your work.

3.2.3 - The Document Area

The document area is where all open documents are displayed. Documents can be maximized to fill the
entire area, minimized to the corner, or left at their normal size for viewing multiple documents. The size
of the document area can be increased or decreased as desired by resizing or toggling the Document
Selector and Output Window panes.

3.2.4 - The Output Window

The output window contains the output of assembler operations, as seen in Figure 3.5.

Figure 3.5 – The XGS Micro Studio Output Window.

The output window will accumulate output from successive assembly operations. To clear the output
window, select Clear Output Window under the Window menu.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
35

3.2.5 - The Status Bar

The status bar (seen in Figure 3.6) runs along the bottom of the screen at all times and tracks basic
information like the status of special keys and the location of the cursor within the current document,
among other things.

Figure 3.6 – The XGS Micro Studio Status Bar.

3.3 - Editing, Loading and Running Programs
The two primary purposes of the IDE are editing source code and programming the assembled programs
onto the XGS ME console.

IMPORTANT!

When using XGS Micro Studio to program the XGS ME hardware, make sure the
SYSMODE switch (located at the back of the board next to the parallel port) is set to
PGM mode. Once the programming is complete, set the switch to RUN mode. When
you’re ready to program the system again, switch back to PGM mode. In short, a
program cannot be written to the processor without PGM mode set, and the program
cannot run without RUN mode set.

3.3.1 - Loading & Editing Source Code

Under the File menu, Select Open… (Ctrl+O) to open an existing source file, or New (Ctrl+N) to create a
new source file. Once open, any source file can be edited just like any other standard windows program.
Multiple levels of undo and redo are supported, as are the clipboard, find and replace, and so on.

3.3.1.1 - Line Numbers

Unless disabled, all document windows display line numbers next to each line of source code (as seen in
Figure 3.7). To turn this option on or off, see the next section, Configuring the Tools.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
36

Figure 3.7 – Document Line Numbers.

3.3.1.2 - Document Editing Colors

Currently, XGS Micro Studio allows the user to select foreground and background colors for the
document windows, as well as the text font and size. To manipulate these options, see the next section,
Configuring the Tools.

3.3.2 - Running Programs

XGS Micro Studio makes it easy to run your program once it’s been written. Simply click Program and
Run (F5) (making sure the SYSMODE switch is set to PGM mode). This will program the assembled
code onto the hardware. Once the programming is complete, be sure to switch SYSMODE into RUN
mode, as the program will not be able to execute otherwise. Don’t forget to switch back to PGM when
you’re ready to program it again.

3.4 - Configuring the Tools
Under the Build menu, select Tool Settings… (Ctrl+T) to display the Configure Tools window. This
window allows the underlying tools (the editor, assembler, and hardware driver) to be configured and
customized.

This window is broken up into the following four tabs:

• Assembler Input

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
37

• Assembler Output

• Hardware

• Editor Colors & Styles

The following sections fully detail each of these tabs.

3.4.1.1 - The Assembler Input Tab

This tab, shown in Figure 3.8, configures of the data sent into the assembler from XGS Micro Studio.

Figure 3.8 – The Assembler Input Tab.

3.4.1.1.1 - Mnemonic Set

The assembler accepts two different sets of mnemonics (which describe what the various assembly
language instructions "look like"). The default is the standard Ubicom/SX mnemonic set, used in most SX
documentation and literature, and supported by the XGS Micro Studio syntax highlighter. The less
common Parallax/PIC dialect is also available (used primarily on PIC microcontrollers), making it easy to
deal with source code written for other assemblers when necessary.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
38

3.4.1.1.2 - Default Radix

Determines the base in which numeric values are expected when a prefix is not included. For example,
the hex digit C9 must normally be written $C9 (the $ prefix denotes hexidecimal). If the default radix is
hexidecimal, however, the value C9 (without the $ prefix) will be considered equivalent. Of course, if you
change the default radix, decimal values like 117 and 48 will be considered hexadecimal as well unless
preceded by the decimal prefix.

XGS Micro Studio supports radix specification using the following prefixes. These prefixes are necessary
when using a base that is not currently specified as the default. See Table 3.1 for a complete listing.

Table 3.1 – Number base suffixes.

Prefix Description

D’ Decimal

$ Hexidecimal

% Binary

O’ Octal

3.4.1.1.3 - Tab Width

Sets the assumed width of a tab character. The maximum value is 20.

3.4.1.1.4 - Case-Sensitive Symbols

This option is currently disabled as it is not supported fully by the assembler.

3.4.1.1.5 - Additional Assembler Command-Line Options

While the Configure Tools window provides complete control over the assembler, it is sometimes
convenient or necessary to specify custom command-line strings.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
39

3.4.1.1.6 - Restore Assembler Input Defaults

Restores the default values for this tab.

3.4.1.2 - The Assembler Output Tab

This tab, shown in Figure 3.9, configures the output produced by the assembler.

Figure 3.9 – The Assembler Output Tab.

3.4.1.2.1 - Object Code Format

XGS Micro can output assembled programs in a number of formats, as listed in Table 3.2.

IMPORTANT! Only INHX8M (.HEX) output files are compatible with XGS Micro Studio!

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
40

Table 3.2 – Supported output formats.

Option Extension Description

INHX8M HEX Intel 8-Bit merged hex

INHX8S HXH/HXL Low- and high-order bytes split among two files.

INHX16 HEX 16-bit version of INHX8M.

INHX32 HEX 32-bit version of INHX8M.

IEEE695 SXE IEEE-695 compliant object code and debug info.

BIN16 OBJ Binary object format.

3.4.1.2.2 - Use Full Paths in .MAP File

XGS Micro Studio does not currently use the .MAP file, but this option specifies whether or not it should
contain full paths of referenced files. This option can be useful when exchanging assembler output
between XGS Micro Studio and other development tools.

3.4.1.2.3 - Processor

The processor targeted by the assembler when generating object code. For XGS Micro compatibility,
always leave this set to SX52.

3.4.1.2.4 - Warning Message Level

Controls the type and quantity of messages generated by the assembler. Table 3.3 lists the available
options.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
41

Table 3.3 – Warning message level options for the SASM assembler.

Level Description

All Output All messages will be
output.

Errors and Warnings Only severe errors and
warnings will be output.

Errors Only Only severe errors will be
output. All non-critical
messages are
suppressed.

For most development purposes, All Output is the recommended setting.

3.4.1.2.5 - Listing File Format

The assembler can produce a program's listing file in one of three ways:

• Normal listing file

• Listing file with page formatting (makes printing listing files easier)

• No listing file

3.4.1.2.6 - Restore Assembler Output Defaults

Restores the default values for this tab.

3.4.1.3 - The Hardware Tab

This tab, shown in Figure 3.10, configures the interface (driver) between XGS Micro Studio and the
physical XGS Micro hardware attached to the development PC.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
42

Figure 3.10 – The Hardware Tab.

3.4.1.4 - Programmer Repetition

These values can be used to alter the number of times a command sent to the XGS Micro hardware is
repeated while programming it. Higher numbers may, in some cases, increase the command's reliability
(usually at a negligible performance cost).

Generally speaking these settings need not be changed.

3.4.1.5 - Write Check Frequency

As XGS Micro Studio programs the XGS Micro hardware, it will periodically verify data as it is written to
help ensure correct programming. This value alters the frequency at which this verification occurs. The
higher the number, the more reliable the programming and the longer it takes.

Generally speaking this setting need not be changed.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
43

3.4.1.6 - Parallel Port

These settings allow LPT1 through LPT3 to be selected as the active parallel port. Furthermore, the
location of the ports within memory can be altered in the case of unusual system configurations.

NOTE Parallel port addresses are both entered and displayed in hexadecimal.

3.4.1.7 - Restore Hardware Defaults

Restores the default values for this tab.

3.4.1.8 - The Editor Colors & Styles Tab

This tab, shown in Figure 3.11, configures the editor’s color and font settings. As the look and feel
changes, the preview text box automatically updates to reflect it. Note that you can also edit the contents
of the preview box to test various aspects of the look and feel before committing them.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
44

Figure 3.11 – The Editor Colors & Styles Tab.

3.4.1.9 - Font

The font in which all document text is displayed. Also the font used for line numbers.

3.4.1.10 - Size

The size of the font in which all document text is displayed. Also the font size used for line numbers.

3.4.1.11 - Text Color

Foreground color used for text characters.

3.4.1.12 - Background Color

Document background color.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
45

3.4.1.13 - Tab Size

Size (in characters) of document tabs.

3.4.1.14 - Tabs as Spaces

If checked, the editor generates a string of spaces instead of a tab character. Changing this option will not
affect previously entered tabs.

3.4.1.15 - Show Line Numbers

If checked, a vertical gutter with line numbers is displayed in each document. Line numbers start at 1
(one).

3.5 - The Real-Time SX Interface
The Real-Time SX Interface is a powerful built-in tool that allows direct access to the XGS ME's SX52
processor. From this interface, you can perform the following tasks easily:

• Configure basic options like use of the carry flag, I/O sync, code protection and more.

• Configure more advanced functionality, like the reset and brownout timer durations and the
oscillator/crystal.

• Read the current status of the device, including the device word, FUSE and FUSEX registers, and the
program memory.

• Program the contents of a hex file to the processor's program memory.

• Limited control over the FUSE and FUSEX registers.

To display the Real-Time SX Interface, select Real-Time SX Interface (Ctrl+I) under the Tools menu.

The SX interface consists of two tabs:

• The Main Interface

• Registers

3.5.1 - The Main Interface Tab

The main interface tab represents a high-level view of the SX52’s configuration settings, and is displayed
in Figure 3.12.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
46

Figure 3.12 – The Main Interface Tab of the Real-Time SX Interface.

To program the XGS Micro using the current settings and program memory buffer, click Program. Click
Read to read the status and program memory of the XGS Micro. Click Restore XGS Defaults to restore
the factory settings of the XGS Micro (then click Program to write the changes to the physical hardware).

NOTE The changes you make to the settings and program memory within the SX interface do
not take effect until you click Program!

The options available within the Main Interface tab are as follows:

• Device
Switches between the SX48/52 and the SX18/20/28 families of devices. For development on the XGS
Micro, always leave this set for SX52. Changing this setting will result in incorrect programming of the
device or other errors.

• Brownout
Sets the duration of the brownout timer.

• Reset Timer
Sets the duration of the reset timer, which dictates how long the system idles after reset before
execution begins.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
47

• Oscillator
Configures the type of oscillator used to drive the SX. For most applications, the default settings need
not be changed.

• Crystal
Advanced control over the crystal used to drive the XGS Micro.

• Options
Miscellaneous options, such as use of the carry flag, I/O port sync, sleep clock activation, watchdog
timer activation, and code protection. The default settings here will usually do as well.

• Device String
Reflects the device ID string of the last XGS Micro either read from or written to. This is updated each
time you press the Program or Read buttons.

Aside from configuration options, an important task of the SX Interface is dealing with hex programs.

3.5.1.1 - Programming the XGS Micro With a Hex Program

Take the following steps to program the XGS Micro with a hex program. If you do not already have a hex
program handy, assemble an existing source file using XGS Micro Studio. Make sure the output format is
set for INHX8M.

• Click Load Hex and select the file you would like to program the device with.

• When the file is loaded, its program's options will override the current settings of the SX Interface.
Confirm that these are the intended options, and make changes if necessary.

• Click Program.

3.5.1.2 - Saving the XGS Micro to a Hex Program

Take the following steps to save the current status and program memory of the XGS Micro to a hex file.
Note that the results of this process can be used with the process above to program the subsequently
device.

• Click Read. The device will be read into the program memory buffer and settings of the SX Interface.

• Click Save Hex and select the appropriate destination file.

3.5.2 - The Registers Tab

The Registers Tab is the low-level counterpart to the Main Interface Tab, displaying the SX52’s
configuration settings directly, rather than translating and grouping their functionality. It is displayed in
Figure 3.13.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
48

Figure 3.13 – The Registers Tab of the Real-Time SX Interface.

The Registers Tab allows you to directly modify the SX's FUSE and FUSEX registers without
reprogramming the entire device. For example, the clock rate of a running program can be changed
quickly without reprogramming it entirely. Figure 3.14 displays the FUSEX register displayed in the form
of checkboxes.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
49

Figure 3.14 – The SX52 FUSEX Register in Checkbox Form.

NOTE
Due to the nature of the SX's program memory (where FUSE and FUSEX are stored),
zero bits cannot be written to the device after it has been programmed! Only bits set to 1
may be changed. This is why the Registers tab only provides "limited" control over the
device.

NOTE In the Registers tab, register bits are edited and viewed as checkboxes. A checked box
represents a one bit, while an unchecked box represents zero.

3.5.2.1 - Reading Registers

To read a register from the XGS Micro, click Read in either the FUSE or FUSEX pane (depending on
which register you want to read). The register value will immediately update the bit check boxes.

3.5.2.2 - Programming Registers

To program a register on the XGS Micro, click Program in either the FUSE or FUSEX pane (depending on
which register you want to program). The values of the register's bit check boxes are used to program the
register. Remember, only one bits may be programmed. Zero bits will have no effect.

3.6 - The Instruction Browser
The Instruction Browser (see Figure 3.15) allows you to quickly look up information on SX instructions
using their mnemonic (MOV, ADD, SUB, etc.). Using the instruction browser allows you to easily calculate

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
50

clock-accurate timings or object code size. It can also be used to clarify instructions you don't currently
recognize or recall.

Figure 3.15 – The Instruction Browser Displaying the ADD Instruction.

Display the Instruction Browser by selecting Instruction Browser (Ctrl+B) under the Tools menu.

3.6.1 - Instruction Lookups

To look up an instruction, enter it in the text field marked Mnemonic and click Search.

If the instruction is found, it will appear in the area below. From top to bottom, the following pieces of
information are displayed:

• Instruction Mnemonic
The instruction's mnemonic as understood by the assembler. This is the same mnemonic you entered
in the Mnemonic box above.

• Instruction Name
A more descriptive name that briefly explains the instruction.

• Summary
A full explanation of the instruction, its functionality, operands and side effects.

• Variants
For each variant of the instruction, this table lists its syntax (operands), words of program memory
required, clock cycles consumed during execution, and important registers changed after the
instruction executes.

Chapter 3: Using XGS Micro Studio

XGameStation™ Micro Edition User Guide
51

TIP The instruction browser will always remain above your documents, allowing you to type
while reading it simultaneously. Close the window to free up the screen space.

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
52

Chapter 4: Using SX-Key
The SX-Key is a hardware/software package from Parallax, Inc. for programming SX microcontrollers, like
the SX52 used in the XGameStation Micro Edition. The SX-Key IDE is the development software used to
write programs for SX chips and program them via the SX-Key hardware. This chapter is a complete
overview of how SX-Key is used.

4.1 - Installing the SX-Key Software
If you haven’t already done so, you’ll of course need to install SX-Key before you can use it.

See Guide 2 – How to Load an Example Program onto the XGS ME for step-by-step instructions for
installing and configuring SX-Key.

4.2 - Elements of the Interface
The SX-Key IDE is designed to be familiar to users of other IDEs. Figure 4.1 depicts the layout of the IDE
as it usually appears.

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
53

Figure 4.1 – The SX-Key IDE Interface.

The program is split up into five main areas:

• The Toolbar & Menu Bar

• The Document Selector

• The Document Area

• The Output Window

• The Status Bar

The following sections explain these areas in full detail.

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
54

4.2.1 - The Toolbar & Menu Bar

The toolbar (seen in Figure 4.2) encapsulates most of the SX-Key IDE’s in easy-to-use buttons.

Figure 4.2 – The SX-Key IDE Toolbar.

Use the toolbar to create, open and save documents, invoke built-in tools like the Device and Clock
windows, and assemble, write and view listings of programs.

The following is a brief explanation of each toolbar button:

• New
Creates a new document.

• Open (Ctrl+O)
Opens a document for editing.

• Save (Ctrl+S)
Saves the currently active document.

• Assemble (Ctrl+A)
Assembles the currently selected document. The results are printed in the output window.

• Program (Ctrl+P)
Assembles the currently selected document and program it to the XGS ME. The results are printed in
the output window.

• Run (Ctrl+R)
Assembles the currently selected document, program it to the XGS ME, and generate a clock signal
to run the program. The results are printed in the output window.

• Debug (Ctrl+D)
Assembles, programs and runs the currently selected document. Also activates debugger, allowing
the execution of the program to be controlled and its memory to be monitored.

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
55

• Debug (Reenter) (Ctrl+Alt+D)
Same as Debug, but does not reprogram the XGS ME. Allows the last debugging session to be
resumed without waiting for the programming process. The current breakpoint and data watches can
be changed, but the program source code cannot.

• Device (Ctrl+I)
Opens the Device window, allowing direct control over the SX52’s configuration registers and
program memory.

• Clock (Ctrl+K)
Opens the Clock window to allow control over the frequency and activity of the SX-Key oscillator as a
program runs.

In addition to the items on the toolbar, the following options are available under the various menus (only
items not covered in the toolbar section are listed):

4.2.1.1 - The File Menu

• Print…
Displays the print dialog box for the currently selected document.

4.2.1.2 - The Edit Menu

• Undo (Ctrl+Z)
Undoes the last action in the selected document. Undo is good for multiple levels, allowing entire
sequences of modifications to be undone.

• Redo (Ctrl+Y)
Redoes the last action undone in the selected document. Redo is good for multiple levels, allowing
entire sequences of modifications to be undone.

• Cut (Ctrl+X)
Cuts the current selection from the selected document to the clipboard.

• Copy (Ctrl+C)
Copys the current selection in the selected document to the clipboard.

• Paste (Ctrl+V)
Pastes text content in the clipboard to the currently selected document.

• Find… (Ctrl+F)
Displays the Find dialog, allowing the currently selected document to be searched.

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
56

• Find Next (F3)
Finds the next occurrence of the last search string in the selected document.

• Find/Replace… (Ctrl+H)
Displays the Replace dialog, allowing the currently selected document to be searched for text strings
to replace with a replacement string.

• Go to Line Number… (Ctrl+G)
Displays a dialog asking for a line number. The currently selected document is then scrolled to the
specified line.

• Clear Errors
Clears and hide the Output window. The window will reappear upon the next assembly.

4.2.1.3 - The Run Menu

• View List (Ctrl+L)
Generates an annotated program listing of the currently selected document in the document's
directory and opens it.

4.2.1.4 - The Help Menu

• Contents
Displays a brief explanation of the WATCH and BREAK directives, used with the debugger.

4.2.2 - The Document Selector

The document selector, as seen in Figure 4.3, lists the currently open documents.

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
57

Figure 4.3 – The SX-Key IDE Document Selector.

Click a file in the document selector to bring it to the foreground. As documents are opened and closed,
the document selector automatically updates.

4.2.3 - The Document Area

The document area is where all open documents are displayed. Documents cannot be resized or tiled;
they always remain maximized to fill the document area, and as such, only one document is visible at a
time.

4.2.4 - The Output Window

The output window contains the output of assembler operations, as seen in Figure 4.4

Figure 4.4 – The SX-Key IDE Output Window.

The output window will accumulate output from successive assembly operations. To clear and hide the
output window until the next assembly, select Clear Errors under the Edit menu.

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
58

4.2.5 - The Status Bar

The status bar (seen in Figure 4.5) runs along the bottom of the screen at all times and tracks basic
information like the status of special keys and the location of the cursor within the current document,
among other things.

Figure 4.5 – The SX-Key IDE Status Bar.

4.3 - Editing, Loading and Running Programs
The two primary purposes of the IDE are editing source code and programming the assembled programs
onto the XGS ME console.

4.3.1 - Loading & Editing Source Code

Under the File menu, Select Open… (Ctrl+O) to open an existing source file, or New to create a new
source file. Once open, any source file can be edited just like any other standard windows program.
Multiple levels of undo and redo are supported, as is the clipboard, find and replace, and so on.

4.3.2 - Programming, Running and Debugging Programs

NOTE

The XGS ME’s SYSMODE switch (located at the back of the board near the parallel port)
must be set to KEY mode in order for SX-Key to program the processor with your code.
To run a program without SX-Key, the SYSMODE switch must then be set to RUN
mode. Remember, however, that no programming, reading or debugging of the
processor can be done if SYSMODE is not set to KEY mode.

Once a program is ready to execute, it can be programmed onto the XGS ME by the options found under
the Run menu.

To verify that your program is free of syntax errors, or to generate an assembled object code file, select
Assemble (Ctrl+A). Depending on how you have configured SX-Key, (see the next section, Configuring
SX-Key) the assembled object file will appear in either the directory of your source file, or SX-Key’s own
internal directory for storing files output by the assembler.

Once your program is verified by the assembler, you can program it onto the XGS ME with the Program
(Ctrl+P). This option will assemble and program your code to the hardware, but will not cause SX-Key to
generate a clock signal of its own. You can, however, run this program using the XGS ME’s built-in

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
59

oscillator by switching the SYSMODE switch to RUN mode. Just remember to set it back to KEY mode
before attempting to program it again.

If you would like to use the SX-Key’s built-in oscillator to clock your program (allowing you to run at
numerous different speeds with the Clock window or use the speed requested in your source code via
the FREQ directive), select Run (Ctrl+R). This will assemble your code and program it onto the hardware,
and will cause SX-Key to generate its own clock signal, effectively allowing your program to execute.

4.4 - Configuring SX-Key
Select Configure… (Ctrl+U) under the Run menu to display the Configure window (depicted in Figure
4.6).

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
60

Figure 4.6 – The SX-Key Configure Window.

This window allows you to configure the SX-Key IDE. The following sections explain each feature of the
window in detail:

• Serial Port
Allows you to specify which COM port the SX-Key cable is connected to.

• Create backup (.bak) files
If checked, SX-Key will create a backup of the previous version of a modified document when it is
saved.

• Use SASM
If unchecked, an older version of the assembler will be used to assemble source files, which may be
useful for legacy code but will most likely cause errors with new code. It is unlikely that this option
need be changed (unchecked) for XGS ME development.

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
61

• SASM files to “SASM Output” dir
If unchecked, SASM-generated files will appear in the directory of the selected source file. If checked,
these special files will appear in the “SASM Output” directory, located in SX-Key’s installation
directory.

• Local Labels Must Start in Col. 1
If checked, local labels must start in the first column of the source file. When unchecked, these labels
may be indented.

• Use New Editor
Activates or deactivates the latest version of the SX-Key editor, as well as the configuration options
that appear below this checkbox. Leave this option checked.

• Font Size
The size of the source code font.

• Tab Size
The size (in spaces) of a tab indentation. Limited to 2, 4, 6 or 8.

• Colored Code Keywords
If checked, assembler keywords (instructions) will be highlighted with the specified color.

• Boldface Code Keywords
If checked, assembler keywords (instructions) will be displayed in bold.

• Colored Comments
If checked, comments will be highlighted with the specified color.

• Error BG Color
Color used to highlight erroneous lines flagged by the assembler.

• Jump to Assembly Error Line
If checked, the cursor will jump to the line of the first error after assembly.

4.5 - The Device Window
Selecting Device… (Ctrl+I) under the Run menu opens the Device window (depicted in Figure 4.7),
which allows direct control over the XGS ME’s SX52 processor.

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
62

Figure 4.7 – The SX-Key Device Window.

The following sections explain each option in the window.

• Device
Specify the type of device is being programmed and debugged. Always leave this set for SX48/52
when developing for the XGameStation.

• Oscillator
Set the oscillator used to drive the SX52 at runtime. The Table 4.1 explains the available options.

• Brownout
Specify the threshold voltage for a brownout reset (or disable brownout entirely). For XGS ME
development this option should be left in its default state.

• Reset Timer
Specify how long the processor should delay after a reset before the code execution begins. For XGS
ME development this option should be left in its default state.

• Options
Provides a number of very advanced options that are of little value to XGS ME development, some of
which aren’t even applicable to the SX52 processor. These should be left to their default values.

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
63

• ID
When the SX52 is read with the Read button, its device identification string is read as well, and
displayed here. Since all XGS ME consoles use the SX52 model, the device string is of little value.

• E²Flash
After reading the SX52 with the Read button or assembling a source program, this window contains a
complete hex dump of the program memory.

• Program
Programs the current hex dump displayed in the E²Flash window onto the SX52.

• Read
Reads the SX52’s program memory into the E²Flash window.

• Verify
Determines if the program memory of the SX52 matches the hex dump in the E²Flash window.

• Save Hex
Saves the E²Flash hex dump to a file.

• Load Hex
Loads a hex file into the E²Flash window.

Table 4.1 – SX52 oscillator settings.

Setting Description

HS1…3

XT1…2

LP1…2

Specifies the oscillator drive capacity
for high speed, medium speed
crystal/resonator, and low power
crystal/resonator clocks.

External RC Specifies special drive for external
resistor-capacitor clock circuits.

Internal 32 KHz…4 MHz Specifies internal clock at indicated
frequency.

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
64

4.6 - The Clock Window
Select Clock… (Ctrl+K) under the Run menu to open the Clock window (depicted in Figure 4.8).

Figure 4.8 – The SX-Key Clock Window.

This window provides control over the activity and frequency of the SX-Key oscillator. The following
sections cover each facet of the Clock window:

• Freq (MHz)
Enter an exact clock rate, in MHz, for the SX-Key oscillator.

• Frequency Slider
Vertical slider that allows the clock rate to be adjusted by hand in real-time, from 400 KHz (bottom) to
110 MHz (top).

• On
When checked, the SX-Key oscillator is running. Unchecking this turns the oscillator off.

• Reset
Reset the SX-Key oscillator.

• Okay
Save the oscillator setting and close the Clock window.

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
65

4.7 - The Debugger
One of the most useful aspects of SX-Key is its integrated debugger, which is invoked by selecting
Debug (Ctrl+D) from the Run menu. The Debug (reenter) (Ctrl+Alt+D) option will bring up the debugger
as well, without reprogramming the XGS ME. The debugger, which spans multiple windows, is shown in
Figure 4.9.

Figure 4.9 – The SX-Key Debugger.

The debugger is perhaps the most complex part of the SX-Key IDE. The following sections explain the
debugger from both an overview and detail-oriented perspective.

4.7.1 - Debugger Overview

The debugger is composed of four main windows (some of which may not be visible at all times):

• The Registers Window

• The Code Window

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
66

• The Watch Window

• The Debug Palette

The Debug palette provides the most overall control of the debugging process, allowing you to stop, start
and step through the program’s execution, as well as hide or show the other three windows.

TIP If at any time you find that a debugger window is not visible, press its corresponding
button on the Debug palette to bring it back into the foreground.

The Registers and Watch windows allow you to view the exact state of the processor and its memory in
real-time as it executes, or between runs. The Code window allows you to track the processor as it
moves through your source code. You can also move the breakpoint using this window. Together, these
windows give you total control over the processor and the ability to monitor and even alter every memory
register.

The following sections describe each window in detail.

4.7.2 - The Debug Palette

The debug palette, pictured in Figure 4.10, is the main control panel for the debugger.

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
67

Figure 4.10 – The Debug Palette.

The palette consists of a vertical strip of buttons and a pull-down menu, described in the following
sections:

• Step (Alt+S)
Executes a single instruction and then immediately returns control to the debugger. Use this to
incrementally step through your code and examine the effects of individual instructions.

• Walk (Alt+W)
Executes code instruction-by-instruction, briefly pausing in between each to allow the user to watch
the flow of execution and study its effects over time. Think of this mode as the automated equivalent
of quickly and repeatedly using the Step button to move through the program.

• Run (Alt+R)
Executes code until the breakpoint is reached or the user stops execution.

• Poll (Alt+L)
If code is executing (via the Run button), Poll returns the state of the system to give the user and
updated view while allowing execution to continue uninterrupted. If code is not executing, Poll runs
until a breakpoint is hit, at which point it updates the display, then continues running again.

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
68

• Update Speed
Leave this option at its default setting of Max.

• Stop (Alt+P)
Stops execution and update the display, returning control to the debugger.

• Reset (Alt+T)
Completely resets the processor to its initial state as if the board’s reset button were pressed.

• Registers (Alt+E)
Forces visibility of the Registers window. Useful if this window disappears or slips into the
background.

• Code (Alt+D)
Forces visibility of the Code window. Useful if this window disappears or slips into the background.

• Watch (Alt+C)
Forces visibility of the Watch window. Useful if this window disappears or slips into the background.

• Reset Pos.
Returns all windows to their default positions in the center of the screen.

• Quit (Alt+Q)
Close the debugger and return to the editor.

4.7.3 - The Registers Window

This window, depicted in Figure 4.11, is the most informative part of the debugger interface, constantly
updated to display all register values and the processor’s location within the program (unless the program
is in full-speed execution mode).

Figure 4.11 – The Debugger Registers Window.

Along the left-hand side of the screen, the global and system registers are displayed in both hexadecimal
and binary format. Near the center, a scrolling window displays the disassembled program memory of the

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
69

chip as well as the location of the next instruction to be executed. Above this window are the M (mode)
and W (work) registers, as well as the INT (Interrupt) and SKIP flags. The flags turn blue when set, white
when clear.

The last section, to the right, is a matrix of all registers across all banks of RAM, displayed in
hexadecimal. The currently active bank is highlighted in white.

TIP
Whenever the Registers window is updated, any registers that have changed since the
last update are highlighted in red. If a binary register display contains data that has
changed, the changes are highlighted on a per-bit basis, allowing you to see exactly
what changes have occurred.

4.7.3.1 - Real-Time Manipulation of Registers

Perhaps the most powerful feature of the Code window is that it can be manipulated by the user at
runtime. Click on any register display, binary or hexadecimal, to select it. Once selected (visible by the
inverted colors), enter a new value and press Enter. During modification, pressing Escape (before
pressing enter) cancels the changes and reverts the register to its original value. Binary values are
modified by clicking the desired bit, which toggles its value. The debugger will immediately update the
processor, allowing you to see your changes take affect upon the next execution.

4.7.4 - The Watch Window

This window, depicted in Figure 4.12, displays the all registers marked for watching by the source code.
The WATCH directive is used in your source code to mark which registers should be displayed at debug
time in the Watch window, as well as their desired format and size. Like the Registers window, this
window is constantly updated to allow real-time monitoring of watched registers.

Figure 4.12 – The Debugger Watch Window. The four-byte value represented by pixel is being
watched in decimal mode.

Also like the Code window, watched registers can be manipulated in real-time by simply clicking them and
entering a new value. The watch window, depending on the value of the currently selected field, can
accept values in binary, hexadecimal, decimal or string formats. To state the format of the value you’re
entering, use the standard prefix symbols used in the assembler-- % for binary, $ for hexadecimal, and
nothing for decimal. Strings are entered as-is.

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
70

TIP
Whenever the Code window is updated, any registers that have changed since the last
update are highlighted in red. If a binary register display contains data that has changed,
the changes are highlighted on a per-bit basis, allowing you to see exactly what changes
have occurred.

4.7.5 - The Code Window

Rounding out the debugger interface is the Code window, depicted in Figure 4.13.

Figure 4.13 – The Debugger Code Window.

The code window contains a complete listing of the original source file. The next instruction to be
executed is highlighted with a blue line, and the currently active breakpoint is highlighted with a red line.

4.7.5.1 - Setting the Breakpoint

The initial breakpoint can be set by the source code itself, using the BREAK directive. At debug time, the
Code window is used to move the breakpoint if necessary, simply by clicking the line that corresponds
with the new instruction at the breakpoint’s desired location. Assuming this is a valid line, it will turn red
indicating that it is now the breakpoint location. If it does not turn red, the line is not a valid part of the
code (it is either a blank line, or a non-functional part of the code annotation).

Chapter 4: Using SX-Key

XGameStation™ Micro Edition User Guide
71

4.7.5.2 - The Code Window Toolbar

The Code window has a small toolbar of its own, shown in Figure 4.14.

Figure 4.14 – The Code Window Toolbar.

The action of each button is as follows:

• Jump to Code
Scrolls the window to the source line corresponding to the start of the assembled code (not
necessarily the start of execution).

• Jump to Reset Line
Scrolls the window to the source line corresponding to the start of execution upon a reset.

• Jump to Breakpoint
Scrolls the window to the location of the active breakpoint (if a breakpoint has been selected).

• Jump to “Next Run” Line
Scrolls the window to the source line corresponding to the next instruction that will be executed.

• Jump to Main
Scrolls the window to the source label Main, if defined.

Chapter 5: Troubleshooting

XGameStation™ Micro Edition User Guide
72

Chapter 5: Troubleshooting
This chapter deals exclusively with problems that may arise during the use of the XGameStation Micro
Edition. The problems and their solutions are categorized by the operation they pertain to, making it easy
to quickly refer to this section when trouble strikes.

WARNING!

Always make sure to reset the system before deciding something isn’t working. Often
the system will behave erratically just after programming (among other times) if it isn’t
running off a fresh reset. Do not hesitate to reset the machine frequently, especially after
programming, as this is often the problem. You can ensure that the system has been
properly restarted by observing the brief LED animation next to the SX20 programmer
on the lower left-hand side of the board.

5.1 - XGameStation Micro Edition Console
This section deals with hardware problems regarding the XGS ME console itself.

5.1.1 - Power Supply Plug Doesn’t Fit Outlet

If you are in the United States, only a US power supply will fit wall outlets. If the power supply that came
with your XGS does not fit, your package came with the international power supply.

If you are outside of the United States, you will need the international power supply to connect to wall
outlets. This power supply supports multiple blades, which allow it to fit into a variety of sockets. Be sure
to try all included blades if you are having trouble connecting to the wall. If your power supply does not
support multiple blades, your package came with the US power supply.

If your power supply is the incorrect model, has been lost, or needs to be replaced, you can use any
power supply with the following specifications:

• 9V DC (does not need to be regulated).

• 500 mA (or greater).

• 2.1mm male power jack with ring ground, tip positive.

Chapter 5: Troubleshooting

XGameStation™ Micro Edition User Guide
73

5.1.2 - System Does Not Turn On / No Power

This is a broad problem that may be the result of numerous conditions, but the most common are listed
here. Remember that any such problem may not simply be the product of a single cause, but possibly
multiple causes.

• Verify that the power supply is connected firmly to both the XGS ME power jack and the wall outlet.

• Verify that the power supply being used matches the specifications listed in the previous section.

• It is always possible that incorrect prior usage and/or experimentation has resulted in a burnout. If this
is the case, the unit will need to be replaced.

• If the unit is brand new and has never been used, it is possible that you have received a defective
product. If this is the case, contact Nurve Networks technical support. The defective unit will need to
be returned and possibly analyzed.

5.1.3 - No Video Output

If you have verified that the XGS ME console is powered and turned on (indicated by the power LEDs at
the front of the board), and the system is not producing video, verify the following:

• The processor is programmed with a program that is reliably outputting video. Video output may not
be seen if the processor is loaded with a buggy program or one that is not written to produce video.
First reprogram the processor with one of the original game or graphics demos to verify video output
with a reliable program.

• The color burst crystal and video subsystem chips are firmly connected to their sockets and are
properly oriented. See Figure 5.1 for a visual reference of how these chips are properly connected
with an overlaid outline guide.

• The SYSMODE switch is in RUN mode (or KEY mode if the SX-Key is attached and set to clock the
system). If the switch is in RUN mode, also verify that the oscillator DIP switch is set to 80 MHz, the
required speed for video signal generation, as shown in Figure 5.2.

• The XGS ME console is properly connected to a television set using the two-lead RCA cable included
with the system (or equivalent). See Guide 1 – How to Run the Pre-Loaded Demo in Chapter 2 for
a complete explanation of properly attaching the XGS ME to a television.

• The television is turned on and set to the proper A/V input source.

• The NTSC color burst crystal (3.579545 MHz) is connected if outputting to an NTSC television, and
the PAL color burst crystal (4.43 MHz) is connected if outputting to a PAL television. Only NTSC and
PAL standards are supported. Also make sure that the program running on the processor has been
written for the correct standard.

Chapter 5: Troubleshooting

XGameStation™ Micro Edition User Guide
74

• The Brightness and Saturation potentiometers are set to reasonable values. Bad values will usually
only result in poor or shaky video signals, but certain TVs may not appear to output anything at all in
extreme cases.

• The television’s video configuration is set to reasonable settings, including its own control over
brightness, contrast, saturation, etc.

Figure 5.1 – The color burst crystal and video subsystem chips properly connected to the XGS
ME. Notice the U-shaped alignment notch at the end of each chip, and the dot in the corner of the

oscillator. Use the overlaid outlines as a guide.

Chapter 5: Troubleshooting

XGameStation™ Micro Edition User Guide
75

Figure 5.2 – The System Oscillator DIP Switch Set to 80 MHz.

5.1.4 - No Audio Output

If you have verified that the XGS ME console is powered and turned on (indicated by the power LEDs at
the front of the board), and the system is not producing audio, verify the following:

• The processor is programmed with a program that is reliably outputting audio. Audio output may not
be heard if the processor is loaded with a buggy program or one that is not written to produce audio.
First reprogram the processor with one of the original sound-producing demos to verify audio output
with a reliable program. Remember that many demos and programs do not produce audio at all.

• The sound chip oscillator is firmly connected to its socket and is in the proper orientation, as shown in
Figure 5.3.

• The SYSMODE switch is in RUN mode (or KEY mode if the SX-Key is attached and set to clock the
system). If the switch is in RUN mode, also verify that the oscillator DIP switch is set to 80 MHz,
unless you know the currently loaded program is meant to run at a different speed.

• The XGS ME console is properly connected to a television set using the two-lead RCA cable included
with the system (or equivalent). See Guide 1 – How to Run the Pre-Loaded Demo in Chapter 2 for
a complete explanation of properly attaching the XGS ME to a television.

• The television is turned on and set to the proper A/V input source.

• The volume on both the XGS ME and the television is set to a reasonable level.

Chapter 5: Troubleshooting

XGameStation™ Micro Edition User Guide
76

Figure 5.3 – The Sound Chip Oscillator Properly Connected to the XGS ME. The black corner dot
is always on the bottom-left, which youcan

5.1.5 - Video is Black and White

This is a simple and common problem arising from a poorly connected (or absent) color burst crystal.
Make sure the color burst crystal, as seen in Figure 5.4, is firmly connected to its socket and in the
properly orientation. Removal of the crystal will turn the video signal black and white, but is harmless.

Chapter 5: Troubleshooting

XGameStation™ Micro Edition User Guide
77

Figure 5.4 – The Color Burst Crystal Properly Connected to the XGS ME.

5.1.6 - Video Signal is Fuzzy/Blurry/Noisy

Every TV is different, so the first consideration when trying to improve the video output of the XGS ME is
the TV itself. Old and low-quality televisions may simply produce a blurry picture on their own. However,
there are a couple sanity checks to perform if you would like to improve the quality of your video output:

• Make sure the XGS ME’s Saturation and Brightness potentiometers are set to reasonable values.
Tweak them until they seem optimal.

• Make sure the TV’s own video configuration is set to reasonable settings, in terms of brightness,
contrast, saturation, etc.

• Make sure the two-lead RCA A/V cable connecting the XGS ME and the television are connected
firmly on both ends. If you are not using the cable included with the XGS ME, the cable itself may be
of poor quality or poorly shielded, resulting in an excess of noise in the signal. Try upgrading to a
higher-quality cable.

5.2 - XGS Micro Studio IDE
This section deals with software problems regarding XGS Micro Studio IDE and its use.

Chapter 5: Troubleshooting

XGameStation™ Micro Edition User Guide
78

NOTE For any problems involving with the XGS ME hardware, make sure the system is
properly powered as explained in the above sections!

5.2.1 - Cannot Initialize WinIO Library

On certain computers, XGS Micro Studio’s first attempt at accessing the parallel port will fail. Simply run
the program again and it should start up without problem.

5.2.2 - Eratic Behavior in IDE/Crashes

In rare cases, the IDE will crash or behave erratically if an outdated or corrupt configuration file is present
in its root directory.

• Always delete main_config.ini when moving the XGS Micro Studio program directory from one
location to another, especially if moving to another computer entirely.

• Delete main_config.ini if you notice bizarre behavior that is not remedied by restarting the program.

• Hibernation/sleep mode in some computers and laptops can disrupt the port driver XGS Micro Studio
uses to communicate with the XGS ME hardware. If you find the program crashes or behaves
erratically after returning from sleep mode, turn the system off completely, then boot up again. You
may want to disable sleep mode in such cases if you plan to use XGS Micro Studio frequently.

5.2.3 - Can’t Communicate with Device/Corrupted Programming

If XGS Micro Studio reports any trouble communicating with the device, such as errors or problems while
reading and/or writing data during the programming process, check the following:

• The parallel cable is firmly connected to both the PC and the XGS ME.

• The SYSMODE switch is in PGM mode. The console cannot be programmed unless this mode is set.

• The proper parallel port is selected in XGS Micro Studio’s Configure Tools window under the
Hardware tab. LPT1 is the most common port, but if your computer supports multiple ports, it may
not be the one your cable is plugged in to. Also verify that LPT1 is mapped to the proper port
address. Remember that this address is both displayed and entered in hexadecimal (without the
leading $ symbol).

• In rare cases, prior usage/experimentation may have burned out the SX-Key. While this is unlikely, it
is always a possibility with a hobbyist- and student-oriented product like the XGS ME.

• If communication with the development PC fails continually, completely power down your machine
and then boot it up again. In rare cases, the hardware itself, especially the parallel port itself,

Chapter 5: Troubleshooting

XGameStation™ Micro Edition User Guide
79

becomes permanently latched in the wrong state. In such cases, a simple restart will not work. A
complete power-down of the system is required to restart all of the associated hardware.

• Make sure to close as many background tasks and applications as possible, especially virus
checkers. The timings necessary to reliably communicate with the XGS ME’s onboard programmer
are delicate and can be disturbed by external processes in rare cases.

5.2.4 - Program Won’t Assemble/Assembler Crashes

If you’re having trouble getting your program to assemble, consider the following:

• Make sure the program is free of syntax errors.

• Make sure the assembler (SASM.exe) is present in the Bin directory and has not been renamed.

• There is a bug in the assembler that causes it to crash when include files are nested too deeply in
directories and/or given filenames above a certain (long) length. To make sure this is the problem,
temporarily move your program and all include files to the shallowest path you can, such as C:\ or
C:\test. If this solves the problem, your directory structure was triggering the bug. Work around this
problem by moving your program into a directory closer to the root of the drive.

• Expanding on the item above, always use the shortest possible filenames and the shallowest possible
directory structures you can.

5.2.5 - Instruction Browser Is Empty/Garbage

If you find the contents of the instruction browser either gone or suddenly garbage, the Instr_Ref.dat file
in the Assets/ directory is most likely missing or corrupt. Reinstall XGS Micro Studio to restore the file.

5.2.6 - “Please save this file before…” Error Message

Unsaved files cannot be assembled, programmed, or used to generate listing files. Please save your file
first and try again.

5.3 - Parallax SX-Key IDE
This section deals with software problems regarding Parallax SX-Key IDE and its use.

5.3.1 - “SX-Key not found on COMx” Error Message

This error message means that the SX-Key programmer unit cannot be detected by the SX-Key IDE.
Check the following:

Chapter 5: Troubleshooting

XGameStation™ Micro Edition User Guide
80

• The SX-Key cable is firmly connected to both the PC’s serial port and the SX-Key, and the SX-Key is
firmly (but gently) connected to the SX-Key port (near the rear of the system by the parallel port). See
Figure 5.5.

• The SYSMODE switch is in KEY mode. The console cannot be programmed via the SX-Key unless
this mode is set.

• The proper serial port is selected in SX-Key’s Configure window. COM1 is the most common port,
but if your computer supports multiple ports, it may not be.

• In rare cases, prior usage/experimentation may have burned out the SX-Key. While this is unlikely, it
is always a possibility with a hobbyist- and student-oriented product like the XGS ME.

Figure 5.5 – The SX-Key Properly Connected to the XGS ME.

5.3.2 - Program Won’t Assemble/Assembler Crashes

If you’re having trouble getting your program to assemble, consider the following:

Chapter 5: Troubleshooting

XGameStation™ Micro Edition User Guide
81

• Make sure the program is free of syntax errors.

• Make sure the SASM.dll file is present in the root installation directory of SX-Key.

• There is a bug in the assembler that causes it to crash when include files are nested too deeply in
directories and/or given filenames above a certain (long) length. To make sure this is the problem,
temporarily move your program and all include files to the shallowest path you can, such as C:\ or
C:\test. If this solves the problem, you can conclude that your directory structure was triggering the
bug. Work around this problem by moving your program into a directory closer to the root of the drive.

• Expanding on the item above, always use the shortest possible filenames and the shallowest
directory structures you can.

5.3.3 - "Current file is READ ONLY and must be saved..." Error
Message

Unsaved files cannot be assembled, programmed, or used to generate listing files. Please save your file
first and try again.

5.4 - Sanity Checks
Above all else, the following “sanity checks” are extremely important details to remember at all times
when dealing with the XGS ME. More often than not, problems are the result of one or more of the
following conditions not being met.

• Make sure the system is properly powered as explained in the above sections.

• If communication with the development PC fails continually, completely power down your machine
and then boot it up again. In rare cases, the hardware itself, especially the parallel port itself,
becomes permanently latched in the wrong state. In such cases, a simple restart will not work. A
complete power-down of the system is required to restart all of the associated hardware.

• When interfacing between the PC and XGS ME, make sure to close as many background tasks and
applications as possible, especially virus checkers. The timings necessary to reliably communicate
with the XGS ME’s onboard programmer are delicate and can be disturbed by external processes in
rare cases.

• Discrepancies between NTSC and PAL video signals. The XGS ME is designed to work with both
PAL and NTSC TVs, but in order to do so, the proper color burst crystal must be connected (in the
proper orientation) and the program running on the processor must be written for the correct standard
as well. Figure 5.6 shows the correct orientation of the color crystal.

• Discrepancies between United States and international power supplies. The XGS ME can run in
virtually any region provided it’s equipped with the proper power supply to connect to a wall outlet.
For US residents, the US power supply comes standard and should work anywhere in the country.

Chapter 5: Troubleshooting

XGameStation™ Micro Edition User Guide
82

For non-US residents, the international power supply can be requested at the time of purchase, which
comes with multiple blade attachments to fit the variety of non-US wall outlet sockets.

• As a general rule, allow 3-5 seconds to pass between the time you power the system down and
power it back up again. While there are no specific dangers involved in switching the machine on and
off faster than this, there have been rare cases of erratic behavior as a result of doing so.

• As a general rule, always use the shortest possible filenames and the shallowest possible directory
structures you can.

• Always check the Read Only flag of any file or files you copy from a CD onto your hard drive.
Attempting to work with read-only files can often lead to erratic behavior, crashes, freezes, and other
such problems.

Figure 5.6 – Color crystal correctly connected and oriented. Note the location of the alignment dot.

5.4.1 - Complete Connections & Settings Reference

This section is a list of every recommended or required connection and setting for the XGS ME console.
When in doubt, simply compare your current connections and settings to those recommended by this list.
Most common problems with the XGS ME are the result of one or more of these guidelines not being
followed.

• Connection: Make sure the power supply is plugged firmly into the wall and firmly connected to the
XGS ME power port on the rear of the board.

Chapter 5: Troubleshooting

XGameStation™ Micro Edition User Guide
83

• Connection: When programming the XGS ME with the SX-Key, make sure the SX-Key is connected
firmly but gently to the 4-pin right-angle SX-Key port next to the power socket, not the one near the
joystick port on the front of the board! Also verify that the SX-Key is firmly connected to the SX-Key
cable, and that the cable is securely connected to the PC’s serial port.

• Connection: Make sure the components on the surface of the SX-Key are facing up in the same
direction as the components on the XGS ME. Reversing this will result in the wrong pins being
connected and could likely burn out both the chip and/or the console .

• Setting: When programming the XGS ME with the SX-Key or running a program with the SX-Key
clock, set the SYSMODE switch to KEY mode. When programming the XGS ME with the parallel
port, set it to PGM mode. When running any program without the SX-Key clock (for example, after
programming via the parallel port), set it to RUN mode.

• Connection: When programming the XGS ME with the parallel cable, make sure the cable is firmly
connected to the XGS ME parallel port, as well as the port on the PC.

• Connection: Make sure the two-lead RCA A/V cable is connected firmly between the XGS ME and
television such that the one color connects the audio ports, and the other color connects the video
ports. Remember that on the TV, the video port is yellow and the audio port is red or white (use either
one). For the cleanest signal possible, ensure that the cable is laid out neatly, without kinks or bends,
and is as far as possible from large sources of electro-magnetic interference (EMI).

• Setting: Verify that if the TV supports multiple A/V inputs, the correct one is selected.

• Setting: For most purposes, make sure the oscillator DIP switch is set for 80 MHz (as shown in
Figure 5.7). Also remember that the 80 MHz setting is required for video generation.

• Connection: Make sure all socketed chips and oscillators are firmly connected and are properly
oriented. See Figure 5.8 for an overview of the board showing the orientation of each socketed chip.

• Setting: Set the brightness and saturation potentiometers to whatever value looks cleanest on your
TV. Also tune the TVs own video controls to match. There are no specific rules for this, as different
TVs behave in different ways. Simply use trial and error to find your optional settings.

• Setting: Set the volume potentiometer to a reasonable volume. Also tune the TV’s volume as
appropriate.

• Connection: If using a keyboard, mouse or other PS/2 device, make sure the cable is firmly attached
to the 6-Pin DIN PS/2 connector on the right-hand side of the board near the front.

• Connection: If using either joystick port, ensure that the joystick is firmly connected.

• Connection: Virtually all single-player games and demos use the left-hand joystick port. If you aren’t
sure which port to use, it’s probably the left-hand port.

• Connection: Take note of the I/O extension headers next to the joystick ports. Make sure nothing is
in physical contact with them unless specifically intended (such as other devices). Unintentional or
bad connections with other devices may interfere with the ability to read the joystick ports themselves.

Chapter 5: Troubleshooting

XGameStation™ Micro Edition User Guide
84

• Connection: Take note of the serial I/O expansion header on the lower-right hand side of the board.
Make sure nothing is in physical contact with them unless specifically intended (such as other
devices).

• Setting: Verify the power switch is set for ON.

5.4.2 - Colored Dots on the Oscillator Chips

As originally mentioned in Chapter 1, the sound and video oscillator chips may come with a colored dot to
indicate their speeds. See Figure 5.8 for a visual reference. The sound oscillator may have a yellow dot
indicating it runs at 5.736 MHz, or “5.736” may actually be printed on it. The NTSC color burst crystal
may have a blue dot or “3.579545” on it. The PAL color burst crystal may have a red dot or “4.43” on it.
In all cases the colored dot is placed over the alignment dot, which allows you to insert the chip into its
socket with the correct orientation.

WARNING!
Just a friendly reminder: Remember to always reset the XGS ME after programming,
switch the SYSMODE switch, or any other major action or reconfiguration. Get in the
habit of resetting before “expecting” something to working.

Chapter 5: Troubleshooting

XGameStation™ Micro Edition User Guide
85

Figure 5.7 – Setting the oscillator DIP switch to 80 MHz.

Chapter 5: Troubleshooting

XGameStation™ Micro Edition User Guide
86

Figure 5.8 – An overview of the XGS ME board highlighting all socketed chip orientations.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
87

Chapter 6: Guide to Included Demo Programs
This chapter is a brief guide to the demo programs that are included with the XGS ME. Exploring and
understanding these demos is a great first step towards developing your own programs. The next
chapter, continuing on this path, discusses simple but effective ways in which the source code for these
demos can be hacked to change their appearance and behavior.

The most important thing to do with this chapter is actually load and run these programs! Simply reading
about them won’t give you any hands-on experience with the software or the hardware. If you have not
already done so, check out the quick start guides chapter 2, which provide easy-to-follow instructions for
loading the XGS ME with a program.

Demos have been written for both NTSC and PAL televisions. This chapter is split into two sections, one
for the NTSC demos, and the other for the PAL demos.

All demos are found on the XGS ME Software CD.

6.1 - NTSC Demos
The following demos were written specifically for NTSC televisions.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
88

6.1.1 - Fire Cube

Author: Kieren Johnstone

Path: Demos\NTSC\Fire_Cube\kj_3d_01.src

Renders a rotating, wireframe 3D cube and creates a downward, fire-like effect coming off each line. See
Figure 6.1 for a screenshot.

Figure 6.1 – The Fire Cube demo.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
89

6.1.2 - Flags

Author: Michael Ollanketo

Path: Demos\NTSC\Flags\mic_flags_01.src

Creates the illusion of a waving, three-dimensional flag by drawing a textured rectangle that is distorted
along the Y-axis by a sine wave. To give the illusion of depth, another sine wave modulates the darkness
of each pixel within the rectangle along the X-axis. A background pattern scrolls behind the flag, making
transparent segments of the flag visible, thus allowing for non-rectangular flag designs. See Figure 6.2 for
a screenshot.

Figure 6.2 – The Flags demo.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
90

6.1.3 - Floormapper

Author: Michael Ollanketo

Path: Demos\NTSC\Floormap\mic_plane_01.src

Demonstrates another common demo effect. This time, the effect is called floormapping and can be
thought of as a rotozoomer in 3D. A texture or pattern is tiled infinitely over a plane viewed from a first-
person perspective. In this particular demo, two such planes are mapped at once and joined in the center
to form what appears to be the inside of a flattened cylinder. See Figure 6.3 for a screenshot.

Figure 6.3 – The Floormapper demo.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
91

6.1.4 - Pac Man

Author: Remi Veilleux

Path: Demos\NTSC\Pac_Man\rem_pac_01.src

A near-complete implementation of the classic arcade game. The demo is implemented with a tile system
similar to the one seen in Tetris, but with the addition of four free-moving sprites overlaid on top for the
characters. See Figure 6.4 for a screenshot.

Figure 6.4 – The Pacman demo.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
92

6.1.5 - Plasma

Author: Michael Ollanketo

Path: Demos\NTSC\Plasma\mic_plasma_01.src

The plasma demo creates a warping, blobbing effect based on the intersection of multiple sine waves on
perpendicular axes. A line of text is scrolled vertically on either side of the screen as well. See Figure 6.5
for a screenshot.

Figure 6.5 – The Plasma demo.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
93

6.1.6 - Pong

Author: Kieren Johnstone

Path: Demos\NTSC\Pong\kj_pong_01.src

A simple take on the age-old classic. Bounce a virtual tennis ball towards your opponent and he’ll bounce
it back. See Figure 6.6 for a screenshot.

Figure 6.6 – The Pong demo.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
94

6.1.7 - Raycaster

Author: Kieren Johnstone

Path: Demos\NTSC\Raycaster\kj_ray_01.src

Demonstrates a technique for drawing 3D environments called raycasting. Essentially, this technique
allows a two-dimensional map to be “extruded” into a first-person perspective in which the user can
navigate. See Figure 6.7 for a screenshot.

Figure 6.7 – The Raycaster demo.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
95

6.1.8 - Rem Colors

Author: Remi Veilleux

Path: Demos\NTSC\Rem_Color\rem_color_01.src

One of the first XGS ME demos. This demo warps a colorful plasma-like image using sine wave distortion
patterns. See Figure 6.8 for a screenshot.

Figure 6.8 – The Rem Colors demo.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
96

6.1.9 - Rotozoomer

Author: Michael Ollanketo

Path: Demos\NTSC\Rotozoomer\mic_rzoom_01.src

Demonstrates a classic demo effect in which a bitmap is tiled infinitely across the screen and rotated. See
Figure 6.9 for a screenshot.

Figure 6.9 – The Rotozoomer demo.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
97

6.1.10 - Sprites

Author: Kieren Johnstone

Path: Demos\NTSC\Sprites\kj_sprites_01.src

Displays a user-controlled running character over a scrolling background in the style of classic side-
scrolling console games. See Figure 6.10 for a screenshot.

Figure 6.10 – The Sprites demo.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
98

6.1.11 - Starfield

Author: Alex Varanese

Path: Demos\NTSC\Starfield\starfield_01.src

Displays a field of stars at varying distances moving over a dark sky background. Comes with numerous
variants, including different background colors and styles, as well as different foreground star styles. See
Figure 6.11 for a screenshot.

Figure 6.11 – The Starfield demo.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
99

6.1.12 - Tetris

Author: Remi Veilleux

Path: Demos\NTSC\Tetris\rem_tetris_01.src

A complete implementation of the classic block-drop puzzle game. The demo is implemented with a tile
system in which the screen is drawn entirely based on a map of 8x8 pixel tile graphics through which
blocks fall and the interface is rendered. See Figure 6.12 for a screenshot.

Figure 6.12 – The Tetris demo.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
100

6.1.13 - Racer

Author: Alex Varanese

Path: Demos\NTSC\Racer\racer_01.src

A simple racing engine demo that allows the user to drive along a 3D perspective track and control when
the direction turns left or right. The effect is completed with a background that scrolls depending on your
turning speed and direction. See Figure 6.13 for a screenshot.

Figure 6.13 – The Racer demo.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
101

6.2 - PAL Demos
The following demos were written specifically for PAL televisions.

6.2.1 - Flags

Author: Michael Ollanketo

Path: Demos\PAL\Flags\mic_flags_pal_01.src

Creates the illusion of a waving, three-dimensional flag by drawing a textured rectangle that is distorted
along the Y-axis by a sine wave. To give the illusion of depth, another sine wave modulates the darkness
of each pixel within the rectangle along the X-axis. A background pattern scrolls behind the flag, making
transparent segments of the flag visible, thus allowing for non-rectangular flag designs. See Figure 6.14
for a screenshot.

Figure 6.14 – The Flags demo.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
102

6.2.2 - Floormapper

Author: Michael Ollanketo

Path: Demos\PAL\Floormap\mic_plane_pal_01.src

Demonstrates another common demo effect. This time, the effect is called floormapping and can be
thought of as a rotozoomer in 3D. A texture or pattern is tiled infinitely over a plane viewed from a first-
person perspective. In this particular demo, two such planes are mapped at once and joined in the center
to form what appears to be the inside of a flattened cylinder. See Figure 6.15 for a screenshot.

Figure 6.15 – The Floormapper demo.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
103

6.2.3 - Plasma

Author: Michael Ollanketo

Path: Demos\PAL\Plasma\mic_plasma_pal_01.src

The plasma demo creates a warping, blobbing effect based on the intersection of multiple sine waves on
perpendicular axes. A line of text is scrolled vertically on either side of the screen as well. See Figure 6.16
for a screenshot.

Figure 6.16 – The Plasma demo.

Chapter 6: Guide to Included Demo Programs

XGameStation™ Micro Edition User Guide
104

6.2.4 - Rotozoomer

Author: Michael Ollanketo

Path: Demos\PAL\Rotozoomer\mic_rzoom_pal_01.src

Demonstrates a classic demo effect in which a bitmap is tiled infinitely across the screen and rotated. See
Figure 6.17 for a screenshot.

Figure 6.17 – The Rotozoomer demo.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
105

Chapter 7: Hacking the Demo Programs
Before getting into the real nitty-gritties of developing XGameStation Micro Edition software, this chapter
will provide an easy and fun introduction to XGS ME programming by walking you through a number of
“hacks” that can be made to the demo programs.

All hacked demos can be found on the XGS ME Software CD.

7.1 - Fun For All Ages
You do not need to know SX assembly language to follow these tutorials. The exact changes necessary
to make are listed explicitly, so even users without any programming experience will be able to follow
them. If you have not yet learned SX assembly, this chapter is a fun way to get a feel for what the
language is like before you take the plunge.

In fact, the most important thing to remember throughout this chapter is that it not meant to teach you
meaningful programming. The algorithms, data structures and techniques used in these demos will not be
explained, aside from cursory rundowns where appropriate. Rather, the point of this chapter is to show
what programmers and non-programmers alike can do by simply tweaking numeric values and data sets
directly in the existing source code, then reassembling that code to see the results. By the end of this
chapter, however, you will be more familiar with the look of SX52 assembly, and intermediate and
advanced programmers will have probably picked up on how a lot of the language works simply by toying
with it.

These hacks are broken up into two categories; NTSC-compatible and PAL-compatible.

Once you’ve read this chapter, you can move on to learning SX assembly language with the Beginning
Assembly Language for the SX Microcontroller eBook, found in the eBooks directory on the XGS ME
Software CD.

7.2 - NTSC-Compatible Hacks
The following hacks can be applied to the NTSC-compatible demos.

7.2.1 - Recoloring the Raycaster

The raycaster demo, written by Kieren Johnstone, demonstrates a technique for drawing 3D
environments called raycasting. Essentially, this technique allows a two-dimensional map to be
“extruded” into a first-person perspective in which the user can navigate.

You can find the raycaster demo and its hacked variants here:
Hacks\NTSC\Raycaster\raycaster_01.src.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
106

The raycaster demo (depicted in Figure 7.1) is our first example in basic code hacking. Our first impulse
might be doing something really cool like changing the world map to create new environments to explore.
While this is definitely an interesting idea, the XGS ME raycaster demo stores its map data in a
compressed format that is expanded into the SRAM at runtime. Since the very first hacking example
would probably be a bit too advanced if it involved reverse-engineering the compression algorithm applied
to an unknown dataset, we’re going to set our sights a little lower.

Figure 7.1 – The raycaster demo before hacking.

This hack will concern itself with nothing more than changing the floor and ceiling colors. Fortunately for
us, this is all too easy as the floor and ceiling colors are stored in aptly named constants. Take the
following steps to perform this simple hack:

• Save raycaster_01.src as raycaster_hack.src.

• Use the editor to perform a search for the text string “floor”, as if you were trying to find some mention
of the floor to determine how and where its color is set.

• The first match should be on line 34, where the constant FLOOR is defined. Jackpot! This is the floor
color. As an added bonus, the ceiling color is found on the next line, stored in the constant CEILING.

• Change the value of FLOOR to (COLOR3 + 1) (a deep red), and the value of CEILING to (COLOR15
+ 3) (a dark brown).

• Reassemble the program and write it to the XGS ME. Notice the new colors? Figure 7.2 illustrates
them.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
107

Figure 7.2 – The new, hacked floor and ceiling colors in the raycaster.

7.2.1.1 - Recommended Hacks

To hack this program further, try identifying which constants refer to other colors you see onscreen (such
as the two bars at the bottom, or the color of the text). Can you change them as easily? If not, what effect
did your changes to the code have?

7.2.2 - Hacking the Plasma

The plasma demo, written by Michael Ollanketo, creates a warping, blobbing effect based on the
intersection of multiple sine waves on perpendicular axes. Lines of text are scrolled vertically on either
side of the screen as well. Figure 7.3 is a screenshot of the plasma demo.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
108

Figure 7.3 – The plasma demo.

You can find the plasma demo and its hacked variants here: Hacks\NTSC\Plasma\plasma_01.src.

This hack will actually involve modifying functional code, albeit in a very simple way. One quick and easy
way to modify this effect is to alter the rate at which these sine waves are traversed, thus compressing or
expanding the waves and blobs on the corresponding axis.

This hack will compress the plasma effect by a factor of three on the Y axis. Take the following steps to
implement it:

• Save plasma_01.src as plasma_hack.src.

• Locate line 197 (dec vertPtr1).

• Copy and paste the line twice below it (without overwriting anything), turning the one dec instruction
into three. Lines 197, 198 and 199 should now all be dec vertPtr1.

• Reassemble the program and write it to the XGS ME. Notice the compressed appearance of the
plasma? Check it out in Figure 7.4.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
109

Figure 7.4 – The plasma effect, compressed down to a third of its original height.

The effect works by speeding up the rate at which the vertical sine wave is traversed. This wave is
calculated beforehand and stored in a lookup table. The index into this table is vertPtr1, which we’re
now moving through the table three times faster (with three consecutive decrement instructions instead of
one). If this doesn’t make sense to you, however, don’t worry—this section is simply intended to show you
what can be done with simple modifications to source code, not to teach the original effect itself.

7.2.2.1 - Recommended Hacks

To expand the complexity of this hack, try applying this technique to one of the other sine wave table
indices. The trick is first finding which variables they are! Once you know which variables are used as
indices into these tables, you can try to find out where in the code they’re being incremented or
decremented, and modify that code to alter their value by a different amount.

7.2.3 - Altering the Rotozoomer Bitmap

The rotozoomer demo, written by Michael Ollanketo, demonstrates a classic demo effect in which a
bitmap is tiled infinitely across the screen and rotated. Figure 7.5 is a screenshot of the rotozoomer demo.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
110

Figure 7.5 – The rotozoomer demo.

You can find the rotozoomer demo and its hacked variants here:
Hacks\NTSC\Rotozoomer\rotozoomer_01.src.

In this hack, we’re going to alter the bitmap by changing its representation in the xgsme.src include file.
This file is entirely dedicated to defining the rotozoomer’s bitmap in program memory through a long
series of DW directives. The directives, in order, define each pixel in the bitmap from left to right, top to
bottom.

7.2.3.1 - A Color Change

While it would be difficult to change the actual shape of the bitmap due to the unintuitive layout of the
source code, it’s easy to change the colors, so let’s start there. As is, the bitmap consists of the text “XGS
ME” in gradient-filled letters over a black background. By making the following changes with your code
editor’s find and replace function, the new bitmap will be black text over a bright pink background:

• Change all occurrences of BLACK to COLOR9+8.

• Change all occurrences of COLOR7+4 to BLACK.

• Change all occurrences of COLOR7+5 to BLACK.

• Change all occurrences of COLOR7+6 to BLACK.

• Change all occurrences of COLOR7+7 to BLACK.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
111

• Change all occurrences of COLOR8+4 to BLACK.

• Change all occurrences of COLOR8+5 to BLACK.

• Change all occurrences of COLOR8+6 to BLACK.

7.2.3.2 - Reassembling

To see your changes in action, perform the following steps:

1. Save the changes to a new file called xgsme_hack.src.

2. Open rotozoomer_01.src.

3. On line 521, change the include directive filename to xgsme_hack.src.

4. Reassemble and run the program.

If all went well, the rotating image should now be black on bright pink, like in Figure 7.6.

Figure 7.6 – Hacking the bitmap colors of the Rotozoomer demo.

7.2.3.3 - Troubleshooting

• The first and most obvious problem you may have is a syntax error that stems from incorrectly
replacing the various color values.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
112

• Make sure to perform the color changes in the order listed! If you change one or more of the colors to
black, then change all occurrences of black to another color, you’ll get a totally different (and possibly
invisible) result!

• If you aren’t seeing a difference, make sure you’ve opened all of the right files in the right directory;
sometimes it’s easy to open the main file from one directory and the include file from another
directory and not realize they’re two separate copies of the same program.

7.2.3.4 - Recommended Hack

Knowing that the dimensions of the bitmap are 32x8, try reformatting the organization of the
xgsme_hack.src bitmap so it can be edited by hand more easily. Check out the PAL version of this hack
in the next section to see an example of turning the rotozoomer bitmap into something more game-like.
The techniques used there apply to this demo as well.

7.2.4 - Changing the Sprite Demo Bitmaps

The sprite demo, written by Kieren Johnstone, displays a user-controlled running character over a
scrolling background in the style of classic side-scrolling console games. Figure 7.7 is a screenshot of the
sprite demo.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
113

Figure 7.7 – The sprite demo.

You can find the sprite demo and its hacked variants here: Hacks\NTSC\Sprites\sprites_01.src.

The bitmaps for these sprites, luckily for us, are stored in an easily-hackable format that we can take
advantage of to write our own graphics into the demo. For this hack, we’re going to try to create new
sprite designs. First, save sprites_01.src as sprites_hack.src. Next, locate the sprite tables found near
the end of the file. The sprites we’ll be hacking start on line 1236.

7.2.4.1 - The Sprite Format

This demo utilizes 2-color (1 bit per pixel) sprites; one color represents a solid pixel, the other “color” is
transparent. Within the sprite table, each bit corresponds to one pixel. Since these sprites are 8x8 pixels,
8 bytes of 8 bits each will store the complete sprite. Furthermore, using binary numbers lets us visually
see each pixel as a zero or one, similar to the way it will appear at runtime.

7.2.4.2 - Hacking the Sprites

Now that we understand how the sprites are stored, we can change them. The first and most dramatic
change we’ll make will be done to the girder sprite, which is currently a bit too sparse for my tastes. The
replacement will turn the girder into a more solid brick tile, suitable for any Super Mario Bros. ripoff game.

On line 1268, the Girder sprite is defined. Replace that definition with the following:

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
114

Girder
 dw %11111011
 dw %11111011
 dw %00000000
 dw %10111111
 dw %10111111
 dw %00000000
 dw %11110111
 dw %11110111

If you were to reassemble and run the program now, you’d see an immediate change.

Next, we’re going to change the power-ups from a heart and a ring-shaped coin to a “1up” and a sword.

On line 1246, the Coin sprite is defined. Replace that definition with the following to get a “1up” symbol:

Coin ; POWERUP_COIN
 dw $B2F ; Colour = bright yellow
 dw %01011011 ; Bitmap data
 dw %11011011
 dw %01011010
 dw %01011010
 dw %01000000
 dw %01000000
 dw %01000000
 dw %11100000

Next, go to line 1257 and replace the definition for Health with the following to get a cool sword:

Health ; POWERUP_HEART
 dw $B9D ; Colour = red
 dw %11000000 ; Bitmap data
 dw %10100000
 dw %01010000
 dw %00101010
 dw %00010100
 dw %00001110
 dw %00010111
 dw %00000011

Lastly, the spike, defined on line 1236, is going to be replaced with something a bit more interesting. This
particular sprite is a bit hard to figure out, so it can be anything from a distant house or hut, to a shrine-
type something-or-other. Maybe it’s Boba Fett’s helmet. In any case it looks kinda cool:

Spike
 dw %00111100
 dw %01111110
 dw %11111111
 dw %00000000
 dw %10100101
 dw %11100111
 dw %11100111
 dw %10100101

Now, with all of the sprites updated to new graphics and colors, reassemble and run the demo. Pretty
cool huh? A significant change in appearance has resulted from only simple changes to some easy-to-
read sprite tables. Check out Figure 7.8 to see it.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
115

Figure 7.8 – The sprite demo updated with hacked graphics.

7.2.4.3 - Troubleshooting

Numerous definitions of memory blocks were changed here, and if you’re having trouble assembling your
hacked version, it’s probable that somewhere in the definitions a declaration got screwed up. Make sure
none of the original symbols are missing, that each DW is on its own line, and so on.

7.2.4.4 - Recommended Hack

The player sprite is a cool rotoscoped animation of a running man. Try redrawing each frame of animation
to create something different, like a rolling tank, spinning wheel, or something else.

7.2.5 - Reshaping the Racer Mountain Range

The racer demo, written by Alex Varanese, produces an effect seen in many early racing games in which
the track is composed of a vertical “stack” of horizontal black lines that are compressed and distorted with
sine waves to create the illusion of perspective and curves. Figure 7.9 is a screenshot of the racer demo.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
116

Figure 7.9 – The racer demo.

You can find the racer demo and its hacked variants here: Hacks\NTSC\Racer\racer_01.src.

As is explained in more detail in the Case Study: Racer Engine Demo chapter, the racer engine displays
its mountain range background using a height map. In other words, a map of height values that
determine, for each pixel along the mountain range’s X-axis, how tall the mountain is at that point. When
these heights are drawn next to one another, they come together to form a smooth, mountain-like solid
shape.

7.2.5.1 - Square Wave Mountains

The height map defined starting on line 1413. To illustrate exactly how the hacking of the mountain
range’s shape works, save racer_01.src as racer_hack.src and replace lines 1413 to 1421 with the
following:

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
117

mount_line
 DW 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10
 DW 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30
 DW 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10
 DW 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30
 DW 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10
 DW 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30
 DW 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10
 DW 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30
 DW 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10
 DW 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30
 DW 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10
 DW 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30
 DW 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10
 DW 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30
 DW 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10
 DW 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30

Of course, in reality you probably aren’t masochistic enough to type that all in manually, so it’s easier to
check out this hack by opening the included copy of racer_hack.src. The key, however, is that instead of
the gradually rising and falling values of the original height map, the new values alternate between 10 or
30, each being repeated 16 times. This will change the shape of the mountain range to a perfect square
wave. The range will be exactly 10 pixels tall for 16 pixels, then exactly 30 pixels tall for the next 16
pixels, and so on. Reassemble and run the program to see the effect, or check out Figure 7.10.

NOTE
All height map code listings in this section have been condensed horizontally to fit the
page. In the actual source code, the height map definition is formatted twice as wide and
half as tall, but the data itself is identical.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
118

Figure 7.10 – The racing mountain ranged hacked into an unnatural square wave.

With a better understanding of how the values in the height map correspond to the onscreen graphics, try
putting in new values and noting their results. Find out how high you can make the mountains reach
before something goes wrong, for example. Be creative! Hacking source code like this is all about letting
your imagination run wild and figuring out ways to use data structures and code to do new things it wasn’t
necessarily intended for.

7.2.5.2 - The Racer City Hack

Messing with the mountain range alone is fun, and I’m sure there are a lot of cool tricks you can pull, but
when you throw in some color changes as well, you can create an entirely new type of background. This
hack performs a few changes to the program colors, as well as cleverly reshaping the mountain range
into a more rigid pattern that resembles a city skyline.

The following is the new city skyline height map, which is to be directly pasted over the original mountain
range as in the previous section:

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
119

mount_line
 DW 10,10,10,10,20,30,20,20,15,15,35,50,35,35,40,40
 DW 20,20,20,40,40,39,39,20,20,50,50,50,40,40,50,40
 DW 10,10,30,30,40,40,40,30,30,10,35,35,35,45,35,35
 DW 50,50,50,49,48,47,46,30,30,40,40,55,40,20,20,30
 DW 10,10,10,10,20,30,20,20,15,15,35,50,35,35,40,40
 DW 20,20,20,40,40,39,39,20,20,50,50,50,40,40,50,40
 DW 10,10,30,30,40,40,40,30,30,10,35,35,35,45,35,35
 DW 50,50,50,49,48,47,46,30,30,40,40,55,40,20,20,30
 DW 10,10,10,10,20,30,20,20,15,15,35,50,35,35,40,40
 DW 20,20,20,40,40,39,39,20,20,50,50,50,40,40,50,40
 DW 10,10,30,30,40,40,40,30,30,10,35,35,35,45,35,35
 DW 50,50,50,49,48,47,46,30,30,40,40,55,40,20,20,30
 DW 10,10,10,10,20,30,20,20,15,15,35,50,35,35,40,40
 DW 20,20,20,40,40,39,39,20,20,50,50,50,40,40,50,40
 DW 10,10,30,30,40,40,40,30,30,10,35,35,35,45,35,35
 DW 50,50,50,49,48,47,46,30,30,40,40,55,40,20,20,30

Even by reading this code dump it should be easy to see the difference in the two shapes. The formerly
smooth and flowing mountain range is now held at the same height exactly for varying lengths (creating
rooftops), after which it sharply juts up or down to a new level (creating sides, or walls). The occasional
single-pixel height jump is also included to create the illusion of thin antennae reaching from the buildings.

But as is, this will simply create a brown, boxy shape over the same blue sky we’ve already seen. It’s not
a very convincing city skyline due to the weird color choices. To really complete the city image, the skyline
should be a dark grey and the sky gradient should become something more dramatic, like perhaps a
deep red evening color. The following steps allow these changes to be made as well:

• On line 70, change (COLOR11 - 1) to (COLOR8 - 1). This changes the hues available to
the sky and mountain background area, allowing it to display more reds, oranges and yellows.

• On line 72, change (COLOR0) to (COLOR14). This will set the sky color to a striking red.

• On line 73, change (COLOR13 + 4) to (BLACK + 4). This will set the former mountain range
to a dark grey, much more appropriate for its new city skyline shape.

That’s it! Open up the included racer_city.src to check out this hack, and take a look at Figure 7.11 for a
screenshot.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
120

Figure 7.11 – The racing demo’s “city hack”.

7.2.5.3 - Recommended Hacks

Pretty incredible, huh? With only a few color changes and the simple remapping of the mountain range
height map, an array of dramtically differing backgrounds and effects can be achieved. Try creating new
backgrounds this way. For example, having already seen brown mountains on a blue sky background,
and the city skyline at sunset, perhaps a snowy arctic setting is in order. Create a new set of mountains,
perhaps taller and more jagged than the originals, and make them white. Then set the sky to a slightly
purplish-blue to set it apart from the others.

7.2.6 - Reshaping the Tetris Blocks

The Tetris demo, written by Remi Veilleux, is a complete implementation of the classic block-drop puzzle
game. The demo is implemented with a tile system in which the screen is drawn entirely based on a map
of 8x8 pixel tile graphics in which blocks fall and the interface is rendered. Figure 7.12 is a screenshot of
the Tetris demo.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
121

Figure 7.12 – The Tetris demo.

You can find the Tetris demo and its hacked variants here: Hacks\NTSC\Tetris\tetris_01.src.

The Tetris demo is just begging to be hacked. Not only is the tile graphic used to draw the blocks open to
our meddling, but so are the blocks themselves! By changing the block shapes and their rotated versions,
you can literally change the gameplay of Tetris in dramatic ways. Not bad considering you won’t have to
write a single line of functional code.

7.2.6.1 - Hacking the Block Tile

Begin by resaving tetris_01.src as tetris_hack.src.

The block tile graphic is the graphic used to draw the individual segments of each Tetris piece. Changing
this to something other than the “square inside a square” design it’s initially set to can create some pretty
striking effects.

The Tetris game is designed around a tile system that can display 8x8 tile graphics on a screen-sized tile
map. The trick to changing the block tile is finding its definition in the array of tile graphics starting on line
1382. On line 1432 you’ll find the following tile definition:

dw 255,129,189,189,189,189,129,255 ; tile 50 (address: 400)

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
122

Notice there are 8 decimal values here. Since the tiles are 8x8 1-bit pixels, each of these 8-bit values
represent one of the 8 pixel rows of the tile. The only problem is, since they’re written in decimal instead
of binary and listed horizontally instead of vertically, they aren’t very easy to edit.

Fortunately for us, all we need to do is rewrite the definition ourselves using a more readable format.
Remember—8 consecutive DW directives is the same thing as one DW directive with 8 values. So, by
rewriting these values using binary and breaking up the 8 values into separate lines, we can visualize the
tile and draw any pattern we want with ease. Replace the single-line declaration currently at line 1432
with the following multi-line declaration. Take care not to overwrite any of the lines above or below the
one we’re replacing:

DW %00111100 ; Happy Face
DW %01111110
DW %11011011
DW %11111111
DW %10111101
DW %11000011
DW %01111110
DW %00111100

Reassemble and run. Pretty bizarre, huh? The formerly mild-mannered puzzle game is now a sadistic
ritual in which grinning, disembodied heads are stacked to form blasphemous structures and patterns.
Check out Figure 7.13.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
123

Figure 7.13 – Replacing the standard Tetris block tile with a happy face.

With our easy-to-edit binary representation of the tile, you can hack any design you’d like into the block
tile. Also in the included version of tetris_hack.src are two other shapes to try out. The first is a brick
pattern that gives the game a much more heavy-duty look:

DW %10111111 ; Brick
DW %10111111
DW %00000000
DW %11110111
DW %11110111
DW %00000000
DW %10111111
DW %10111111

Last is a pattern I call “hologram”, since it creates a very hollow, 80’s art-deco look:

DW %11111111 ; Hologram
DW %10000000
DW %10000000
DW %10000000
DW %10000000
DW %10000000
DW %10000000
DW %10000000

Just remember not to include more than one of these tile definitions in the code at the same time, as it will
disrupt the structure of the rest of the tile table. If you have more than one, make sure all but one are
commented out.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
124

7.2.6.2 - Hacking the Tetris Pieces

WARNING!
The hack described in the last section changed the line numbering within the file and as
such, all line number references from here on will be wrong unless your copy of
tetris.src has been hacked in the manner described above.

Changing the block tile is fun, but hacking the pieces themselves can really turn Tetris upside down. Not
only do such hacks bring about visual changes, but they can drastically affect the gameplay mechanics,
for better or worse.

The shape of each piece is stored in a format that isn’t much more readable than the tiles. Fortunately, in
the comments above each definition is an ASCII-art rendition of what the piece looks like within its 4x4
grid. Also of note is that the pieces are not actually rotated by the Tetris code itself; all four rotations of
each piece are declared manually. As we’ll see later, this opens up some interesting possibilities.

The second Tetris piece definition starts on line 1470 and looks like this:

;
; .XX.
; XX..
;
dw %0000_0000_0110, %0000_1100_0000
; X...
; XX..
; .X..
;
dw %0000_1000_1100, %0000_0100_0000
;
; .XX.
; XX..
;
dw %0000_0000_0110, %0000_1100_0000
; X...
; XX..
; .X..
;
dw %0000_1000_1100, %0000_0100_0000

The comments make it easy to see which variant of which piece is being defined. Each piece is defined
by four 4-bit nibbles, creating a 1-bit, 4x4 grid. Since each program word on the SX52 is 12-bits wide, the
lower 8-bits of two consecutive program words are used.

Read the following very carefully to understand how each piece is encoded: In each DW directive, the first
nibble of the first word is unused, the second nibble of the first word is the first grid row, and the third
nibble of the first word is the second grid row. The first nibble of the second word is unused, the second
nibble of the second word is the third grid row, and the third nibble of the second word is the fourth grid
row. Phew! It’s also fairly easy to just figure out the format visually, but in either case, actually encoding
the piece by hand is a bit of a pain.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
125

Let’s hack the first piece, the square, the definition of which starts on line 1477. For starters, we’re going
to hack in a very imposing, lumbering piece I like to call the “Disruptor”, which is like the standard vertical
line piece if it had a second, perpendicular line attached to one of its ends:

; XXXX
; X...
; X...
; X...
dw %0000_1111_1000, %0000_1000_1000
; X...
; X...
; X...
; XXXX
dw %0000_1000_1000, %0000_1000_1111
; ...X
; ...X
; ...X
; XXXX
dw %0000_0001_0001, %0000_0001_1111
; XXXX
; ...X
; ...X
; ...X
dw %0000_1111_0001, %0000_0001_0001

Remember, this hack only works if you directly replace the old piece with this one. Once pasted in, take a
moment to study how the ASCII-art pattern of each piece was transcribed into the actual binary data used
by the game. Check out Figure 7.14 for a screenshot of this new piece in action.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
126

Figure 7.14 – The large “Disruptor” piece making a bold entrance in the hacked Tetris.

The included version of tetris_hack.src hacks the next two pieces as well, creating an interesting piece
that is actually two separate parts, as well as a single-block piece that can come in handy in some of
Tetris’s tighter moments. As you hack pieces yourself and play with them, take note of how different the
game can feel, and how the usual Tetris-playing strategies can be either enhanced or rendered
completely useless.

7.2.6.3 - Recommended Hacks

The fact that each rotated variant of each piece is encoded as separate data affords us some interesting
opportunities. Because the “rotation” of the pieces is really just the result of the way each variant is
designed, you can actually change the rules of Tetris entirely by “designing” behavior into the variants
other than rotation. For example, imagine a piece that expands and contracts instead of rotating, allowing
it to squeeze through small holes near the top of the pile, then expand to fill out open spaces near the
bottom.

Another interesting (and weird) idea would be to change every variant of every piece into totally random,
disjointed data. Try and see how far you can get when the falling pieces follow no rhyme or reason no
matter what you do!

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
127

7.2.7 - Hacking Pac-Man

The Pac Man demo, written by Remi Veilleux, is a near-complete implementation of the classic arcade
game. The demo is implemented with a tile system similar to the one seen in Tetris, but with the addition
of four free-moving sprites overlaid on top for the characters. Figure 7.15 is a screenshot of the Pac Man
demo.

Figure 7.15 – The Pac Man demo.

You can find the Pac Man demo and its hacked variants here: Hacks\NTSC\Pac_Man\rem_pac_01.src.

This section will present the most complex hack yet; turning Pac Man into a reasonable approximation of
Ms. Pac Man (graphically) using nothing more than color and sprite table changes. Hacking Pac Man into
Ms Pac Man actually isn’t that complicated, but it involves multiple steps:

• Redrawing the Pac Man sprites to include a crude “bow”, like Ms. Pac Man

• Changing the colors of Pac Man and the ghosts to lighter, pastel versions

• Changing the color of the level borders from Pac Man’s blue to Ms Pac Man’s pink.

If you haven’t already, please check out the previous section on hacking Tetris. These two demos were
written by the same author (Remi Veilleux), and as such the code presented here will seem much more
familiar to you.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
128

Begin this hack by saving rem_pac_01.src as ms_pac_man.src. All changes will be made to this file.

7.2.7.1 - Redrawing Pac Man as Ms. Pac Man

In the real arcade game, Ms. Pac Man looks like the original yellow Pac Man, except pink lipstick, a pink
bow, black eyelashes and a beauty mark have been added. The XGS ME implementation of Pac Man
uses 1-bit sprites, which means multiple colors within the same sprite are not possible—unfortunately
precluding the pink lips and bow on a yellow body we would like. Aside from lightening up the yellow color
to a more pastel shade in the next section, we’ll have to rely on drawn-in detail to bring Ms. Pac Man to
life.

The tiles and sprites used in this demo are stored in the same format used in the Tetris demo, which
means they’re difficult to edit by hand. Fortunately, the hard work is already done. The sprite definitions
for Pac Man begin on line 1670. Replace lines 1670-1674 with the following block of code:

;dw 060,126,126,255,255,126,126,060 ; tile 52 (address: 416)

DW %00111100 ; Neutral
DW %01110110
DW %11100111
DW %11111001
DW %11111011
DW %11111111
DW %01111110
DW %00111100

;dw 062,124,112,224,240,120,126,060 ; tile 53 (address: 424)

DW %00111100 ; Right, Mouth Open / Icon
DW %01110110
DW %11100100
DW %11111000
DW %11111000
DW %11111100
DW %01111110
DW %00111100

;dw 060,126,126,255,247,231,195,066 ; tile 54 (address: 432)

DW %00111100 ; Down, Mouth Open
DW %01110110
DW %11100111
DW %11111001
DW %11111011
DW %11100111
DW %01000010
DW %00000000

;dw 060,126,030,015,007,014,062,124 ; tile 55 (address: 440)

DW %00111100 ; Left, Mouth Open
DW %01110110
DW %00100111
DW %00011001
DW %00011011
DW %00111111
DW %01111110
DW %00111100

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
129

;dw 066,195,231,247,255,126,126,060 ; tile 56 (address: 448)

DW %00000000 ; Up, Mouth Open
DW %01000010
DW %11100111
DW %11111111
DW %11111111
DW %11111111
DW %01111110
DW %00111100

The original definitions have been left in the form of comments to make it easier to cross reference these
changes with the original code. Just make sure they stay comments, as the order of the data will be
corrupted otherwise and the program will not even assemble.

These new sprites redraw the Pac Man character slightly to make room for a bow, which is drawn about
as well as a 1-bit, 8x8 sprite could hope for. �

7.2.7.2 - Changing the Pac Man and Ghost Colors

Ms. Pac Man and the ghosts will be altered next, to lighter shades of their normal colors. Fortunately, this
is an easy step—the colors used for the characters are only repeated in one or two places each, making
them easy to change.

Ms. Pac Man is always drawn using the same color, which means this color value can be hard coded and
does not need to be stored in a variable. The only other place the Ms Pac Man color appears is when
drawing the icons that represent how many lives are left. The ghosts, on the other hand, all turn blue
when a power pill is eaten. Because of this, the current ghost colors are stored in variables. The colors
are set once and restored later, which means the changes must be made in two places.

The following lists each step that must be taken to change the character colors to lighter, pastel versions:

• On line 869, change #9 to #12. This lightens up the Ms Pac Man character.

• On line 1741 (or 1790 in ms_pac_man.src after applying the previous changes), change #9 to #12.
This changes the Ms Pac Man icons used to represent the number of lives left.

• On line 530, change #87 to #91. On line 534, change #168 to #172. On line 538, change #231 to
#235. This makes each ghost 4 shades brighter, thus making their appearance more pastel.

• After the ghosts return from their blue-colored panic state, they must resume their normal colors. This
step ensures they return to the new pastels. On line 726, change #87 to #91. On line 727, change
#168 to #172. On line 728, change #231 to #235.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
130

7.2.7.3 - Changing the Level Border Color

• The characters are now lighter, which means the last step is to change the color of the level borders
themselves. In Pac Man, these borders are an almost neon blue shade. In Ms Pac Man, they turn
pink.

• One caveat is that the XGS ME version of Pac Man changes the color of these borders each time a
new level is reached. Since this is only a superficial hack, we aren’t going to worry about these color
changes and instead will only focus on changing the color of the first level.

• The first level color is set in three places. On lines 192, 505 and 736, change #231 to #172.

• That’s it! Reassemble and run the program and the result should be a fairly convincing rendition of
Ms. Pac Man, which isn’t bad considering that once again, no functional code was changed or added.
If your version of the code doesn’t look right, or you’re simply too lazy to make these changes
yourself, check out the included version of ms_pac_man.src, and take a look at the screenshot in
Figure 7.16.

Figure 7.16 – Pac Man hacked into a rendition of Ms Pac Man.

7.3 - PAL-Compatible Hacks
The following hacks can be applied to the PAL-compatible demos.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
131

7.3.1 - Hacking the Plasma Text

The plasma demo, written by Michael Ollanketo, creates a warping, blobbing effect based on the
intersection of multiple sine waves on perpendicular axes. A line of text is scrolled vertically on either side
of the screen as well. Figure 7.17 is a screenshot of the plasma demo.

Figure 7.17 – The plasma demo.

You can find the PAL plasma demo and its hacked variants here: Hacks\PAL\Plasma\plasma_01.src.

The plasma effect itself may be the most important part of the plasma demo, but another interesting
aspect is the scrolling text found on either side of the screen. This text is drawn using a 5x7 pixel font,
and read from a 32-character text string.

7.3.1.1 - Decoding the String

This text string is defined at the end of the plasma_01.src source file, on line 488:

dw $10
dw $01
dw $0C
dw $00
dw $10
dw $0C
dw $01
dw $13

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
132

dw $0D
dw $01
dw $00
dw $06
dw $0F
dw $12
dw $00
dw $14
dw $08
dw $05
dw $00
dw $18
dw $07
dw $13
dw $1B
dw $0D
dw $05
dw $00
dw $00
dw $00
dw $1C
dw $00
dw $00
dw $00

Since it’s not likely that an XGS ME demo adheres to the ASCII format, we shouldn’t assume that this
string is encoded in any way we would recognize. Since we can’t be sure how the font characters map to
the numeric values seen in this string, we’ll have to figure it out by looking for a pattern since we can
figure out what the string says by running the demo.

Fortunately for us, we don’t even have to go this far. Line 477 contains a comment explaining that
character 0 is a space, and that characters 1-26 are the capital letters. What isn’t mentioned in this
comment, but can be determined using the method described above, is that character 27 is a hyphen and
character 28 is a bullet point.

As a first step, resave plasma_01.src as plasma_hack.src.

7.3.1.2 - Hacking the Text

So we’ve got capital letters, a space, a hyphen and a bullet point to work with. We’ve also got 32 total
characters to fill with our hacked message. The next step is to write the message we want and figure out
what each corresponding character code will be. Since A is 1, B is 2, C is 3 and so on, this isn’t going to
be particularly difficult. I’ve encoded the message “THIS TEXT HAS BEEN HACKED”, followed by three
bullet points, in the following replacement for the existing string:

dw 20 ; T
dw 8 ; H
dw 9 ; I
dw 19 ; S
dw 0 ;
dw 20 ; T
dw 5 ; E
dw 24 ; X
dw 20 ; T
dw 0 ;
dw 8 ; H

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
133

dw 1 ; A
dw 19 ; S
dw 0 ;
dw 2 ; B
dw 5 ; E
dw 5 ; E
dw 14 ; N
dw 0 ;
dw 8 ; H
dw 1 ; A
dw 3 ; C
dw 11 ; K
dw 5 ; E
dw 4 ; D
dw 0 ;
dw 0 ;
dw 28 ; *
dw 28 ; *
dw 28 ; *
dw 0 ;
dw 0 ;

Simply replace lines 488 through 519 with this and reassemble the demo. When reassembled and run,
the new message should scroll across each side of the screen in place of the old one. Check out Figure
7.18 for a screenshot.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
134

Figure 7.18 – The hacked plasma demo scroll message.

7.3.1.3 - Recommended Hack

I took the path of least resistance by hacking such a tame message into the demo. However, in the
privacy of your own home, school, or religiously-oriented youth group, it is your sacred duty as a hacker
to code something profoundly offensive, obscene, and/or personally incriminating into it.

7.3.2 - Hacking the Flag Bitmap

The flag demo, written by Michael Ollanketo, creates the illusion of a waving, three-dimensional flag by
drawing a textured rectangle that is distorted along the Y-axis by a sine wave. To give the illusion of depth
and lighting, another sine wave modulates the brightness of each pixel within the rectangle along the X-
axis. A background pattern scrolls behind the flag, making transparent segments of the flag visible, thus
allowing for non-rectangular flag designs. Figure 7.19 is a screenshot of the flag demo.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
135

Figure 7.19 – The flag demo.

You can find the flag demo and its hacked variants here: Hacks\PAL\Flags\flags_01.src.

The bitmap used to texture the flag is stored in a file called flags1.src. This bitmap data is stored in a
fairly simple format that is easy to hand-edit. Each DW directive is a single pixel, allowing for the full 8 bits
of color data to be used. The only problem is that the pixel values are listed vertically, rather than
organized two dimensionally like the bitmap they describe. The flag’s dimensions are 16x16, so I’ve taken
the liberty of presenting a replacement bitmap that’s formatted in a more readable fashion.

There’s no real point in listing the source code here, since it’s simply another design written just as the
original was (aside from the improved formatting). Instead, check out flags1_hack.src, which contains
two flag bitmaps you can select in and out using conditional compilation. One is blank, allowing you to
easily draw in your own designs, and the other is a multi-colored checker pattern. You’ll have to
experiment to get the color values the way you want. Figure 7.20 is a screenshot of my checker pattern
flag:

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
136

Figure 7.20 – The flag demo with a hacked checker pattern.

7.3.3 - Altering the RotoZoomer Bitmap

The rotozoomer demo, written by Michael Ollanketo, demonstrates a classic demo effect in which a
bitmap is tiled infinitely across the screen and rotated. Figure 7.21 is a screenshot of the rotozoomer
demo.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
137

Figure 7.21 – The rotozoomer demo.

You can find the PAL rotozoomer demo and its hacked variants here:
Hacks\PAL\Rotozoomer\rotozoomer_01.src.

In this hack, we’re going to alter the bitmap by changing its representation in the xgsme.src include file.
This file is entirely dedicated to defining the rotozoomer’s bitmap in program memory through a long
series of DW directives. The directives, in order, define each pixel in the bitmap from left to right, top to
bottom.

7.3.3.1 - Changing the Bitmap

If you’ve read the NTSC version of this hack earlier in the chapter, I opted to avoid changing the bitmap
itself due to the unfriendly format of the bitmap definition. This time, however, I decided to go ahead with
a reformat and have put together a human-editable version of the bitmap definition along with a cool
game-like texture to display in the rotozoomer. Check out Figure 7.22 for a screenshot.

Here’s the reformatted code for the new bitmap. Once again, in order to fit the page the code had to be
rewritten to be twice as tall and thus half as wide, but aside from that this is the code itself. You can find a
copy of this in the xgsme_hack.src file in the same directory as this demo.

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
138

DW 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255
DW 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,254
DW 255,253,250,253,250,253,250,253,254,254,254,254,254,254,254,254
DW 254,254,254,254,254,254,254,254,250,253,250,253,250,253,253,253
DW 255,254,250,253,250,253,250,253,254,254,254,254,254,254,254,254
DW 254,254,254,254,254,254,254,254,250,253,250,253,250,253,254,253
DW 255,254,250,253,250,253,250,253,254,254,254,254,254,254,254,254
DW 254,254,254,254,254,254,254,254,250,253,250,253,250,253,254,253
DW 255,255,250,253,250,253,250,253,254,254,254,254,254,254,254,254
DW 254,254,254,254,254,254,254,254,250,253,250,253,250,253,255,253
DW 254,253,253,253,253,253,253,253,253,253,253,253,253,253,253,253
DW 253,253,253,253,253,253,253,253,253,253,253,253,253,253,253,253
DW 060,060,060,250,250,250,060,060,060,250,250,250,060,060,060,250
DW 250,250,060,060,060,250,250,250,060,060,060,250,250,250,060,060
DW 060,060,250,250,250,060,060,060,250,250,250,060,060,060,250,250
DW 250,060,060,060,250,250,250,060,060,060,250,250,250,060,060,060

The main source file for the rotozoomer demo, rotozoomer_01.src, has already been edited to use the
hacked version of the texture. Assemble and run the program to see it in action. If all went well, the
rotating texture should now be the new game-like, futuristic panel, seen in Figure 7.22.

Figure 7.22 – Hacking the bitmap of the RotoZoomer demo into something more game-like.

Now that you have an easily editable bitmap, try putting your own designs in!

7.3.4 - Hacking the Floormapper Demo

The floormapper demo, written by Michael Ollanketo, demonstrates another common demo effect. This
time, the effect is called floormapping and can be thought of as a rotozoomer in 3D. A texture or pattern

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
139

is tiled infinitely over a plane viewed from a first-person perspective. In this particular demo, two such
planes are mapped at once and joined in the center to form what appears to be the inside of a flattened
cylinder. Figure 7.23 is a screenshot of the floormapper demo.

Figure 7.23 – The floormapper demo.

You can find the floormapper demo and its hacked variants here:
Hacks\PAL\Floormap\floormap_01.src.

As you can see in the screenshot, the texture being mapped along the surface of the floors is actually just
a simple checkerboard pattern. In fact, this pattern is so simple that there is no corresponding bitmap in
the demo; it is simply draw on the fly by reading bit 3 of a running counter that is updated after drawing
each scanline.

This hack will modify the frequency of this checkerboard pattern by simply changing the starting state of
one of these counters. The counters we will modify are called du and dv. Each counter is represented in
the code with two variables, however; du_w and du_f, and dv_w and dv_f, respectively. The “w” and “f”
refer to the whole and fractional components of each of these counters. These two variables come
together to form a 16-bit, 8.8 fixed-point value, thus giving the program a greater range of precision than
would be possible using standard 8-bit integers.

Of course, a real discussion of fixed-point math is beyond the scope of this guide and not something that
is relevant to simple hacking anyway. It is important, however, to understand at least something about the
code you’re tinkering with if you can. So, with the preamble out of the way, check out line 112:

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
140

clr du_w
mov du_f,#64
clr dv_w
mov dv_f,#64

This code is initializing the U and V axis counters. It’s clearing the whole part and setting each fractional
part to 64. What’s interesting is what happens when these initial values are changed. For example,
change the #64 on line 112 to #32, and the #64 on line 114 to #255, so it looks like this:

clr du_w
mov du_f,#32
clr dv_w
mov dv_f,#255

Reassemble the program and check out the results (depicted in Figure 7.24). Cool, huh? The
checkerboard has broadened considerably on the horizontal axis, and been condensed vertically. Try
different values in both the whole and fractional components of the counters. What kind of results do you
get?

Figure 7.24 – The floormapper with hacked checker dimensions.

7.4 - Moving On
This chapter has given you an introduction to XGS ME development through the simple hacking of many
of the included demos. As a next step, read the included eBook, Beginning Assembly Language on the
SX Microcontroller, found in the eBooks directory, to start real assembly language programming on the

Chapter 7: Hacking the Demo Programs

XGameStation™ Micro Edition User Guide
141

SX52. Of course, to really code anything, you’ll need to understand the material presented in the real
XGS eBook, Design Your Own Video Game Console.

Chapter 8: Case Study: The Starfield Demo

XGameStation™ Micro Edition User Guide
142

Chapter 8: Case Study: The Starfield Demo
This chapter provides a brisk overview of developing a full, graphical program for the XGS ME. While full
coverage of XGS ME development is relegated to the main eBook, Design Your Own Video Game
Console, this chapter can be thought of as an informative crash course in the most important parts of any
XGS ME program—the TV signal driver and the core program logic.

The demo presented in this chapter is a simple graphical effect called a starfield, in which pixel-sized
“stars” scroll horizontally across the screen at different rates. These different rates give the illusion of
depth, since the slower “stars” appear to be further away than the faster ones. When coupled with a
background that resembles a sky and a brightness level for each star that is proportional to its speed, the
end result is a convincing sky backdrop. See Figure 8.1 for an example of this:

Figure 8.1 – The Starfield Demo.

You can find the starfield demo in the Demos\NTSC\Starfield\ directory on the XGS ME Software CD.

8.1 - Organization of the Demo
Before getting into the specifics of programming and implementation, let’s discuss the general
organization of the demo program in terms of its algorithms and data structures.

Chapter 8: Case Study: The Starfield Demo

XGameStation™ Micro Edition User Guide
143

8.1.1 - Data Structures

8.1.1.1 - The Star List

The heart of the algorithm is maintaining a list of stars, wherein each star is a data structure containing
both its current horizontal location as well as its speed. The star’s X coordinate is stored as a 16-bit fixed-
point number to allow for smoother motion, which will be explained in more detail shortly. In addition to
these two bytes, one byte is used to represent the star’s “depth”, a value used to determine its speed and
brightness. Lastly, the structure is padded to four bytes with a single unused byte. Whenever possible,
align the size of your data structures with powers of two, or at least multiples of 8, 4 or 2. Figure 8.2
illustrates this data structure visually.

Figure 8.2 – The starfield is represented as a list of simple Star data structures.

One interesting note about development in SX assembly language (as well as others), is that data
structures need not be specifically “allocated”. Rather, the structure’s space taken up in RAM is simply
“set aside” and avoided by other parts of the program. In other words, a list of 32 stars that each require a
4-byte data structure require a total of 128 bytes. As long as the base address of a contiguous 128-byte
region is known, and the rest of the program is written such that it does not use any of the 128 bytes
following that address, the data structure can be safely built and used within that space. We’ll come back
to this in a moment.

Chapter 8: Case Study: The Starfield Demo

XGameStation™ Micro Edition User Guide
144

8.1.1.2 - The Rest of the Program

Aside from the star list, the program needs a handful of globals and variables to manage the generation
of the TV signal.

The globals are available no matter which bank is selected, which makes them flexible and, depending on
the situation, faster than the rest of the memory. Because of this, I like to use as much space as I can in
my globals for simple temporary registers, giving my program fast, easy access to “scratch pad” registers
whenever it needs them. In the case of the starfield, I didn’t need any globals other than the temporaries,
so all six globals were used:

ORG $0A
t0 DS 1 ; Temporary registers
t1 DS 1
t2 DS 1
t3 DS 1
t4 DS 1
t5 DS 1

The remaining variables are used to generate the TV signal, and are given their own bank:

ORG BANK_TV_SIGNAL

luma DS 1 ; Temp for luma
chroma DS 1 ; Temp for chroma
comp_video DS 1 ; Temp sum of luma and chroma
burst_phase DS 1 ; Temp for burst phase index

scanline DS 1 ; Scanline counter
counter DS 1 ; General counter
counter2 DS 1 ; General counter

The globals and TV signal generation globals have been allocated, and the remainder of the memory
space is free for use. Since only the first 7 bytes of the first bank of memory have been used, there is
plenty of room left over for our 128-byte starfield array. And while this memory is free to use as-is, and no
declaration or expilcit is necessary, it’s still nice to do the following:

ORG BANK_STARFIELD

This leaves a visual cue in the source code that a memory region is in use starting at this address,
making it more readable. Also, if in the future we decide to allocate specific registers within this region for
whatever reason, the ORG is already there to provide a base for the declarations.

That takes care of the data structures—the global scratch registers, TV signal generation registers, and
starfield array are all ready to use. The beauty of an architecture as simple as the SX52 is that once a
program’s data has been organized, a system-wide memory map is very easy to visualize. Figure 8.3 is
illustrates the final layout of the starfield demo’s memory map.

Chapter 8: Case Study: The Starfield Demo

XGameStation™ Micro Edition User Guide
145

Figure 8.3 – The Starfield Demo’s Conceptual Memory Map

8.1.2 - Algorithms and Logic

The code for any graphical XGS ME program follows a relatively uniform structure. The heart of the
program is the video kernel, which is the program’s main loop. The video kernel is responsible for
maintaining a solid TV signal, which keeps the program’s graphics smoothly displayed and updated on
the screen. Preceding the video kernel is the initialization code, where the SX52 is configured, and global
data structures are initialized. Optionally following the video kernel code are subroutines, which may be
called by the video kernel or initialization code. Since the XGS ME is a traditional video game console, it
may be physically turned off at any time and without warning. As such there is no need for any particular
“shut down” code. For example, there is no underlying operating system or parallel tasks and processes
to which resources must be returned. This program organization is illustrated in Figure 8.4.

Chapter 8: Case Study: The Starfield Demo

XGameStation™ Micro Edition User Guide
146

Figure 8.4 – The Starfield Demo’s Program Organization.

8.1.2.1 - Initialization

Initializing the program is relatively easy compared to the core logic that follows, as is usually the case.
The first step in the initialization of any XGS ME program is configuring the SX52 chip itself. In this case,
that really just means setting the RE port to output. The RE port is responsible for sending the video
signal to the video subsystem, which is why each of its 8 pins must be set to output:

MOV RE, #%00000000 ; Set RE to output
MOV !RE, #%00000000

The next and final step in initializing the program is more complicated. The starfield array we’ve outlined
in the last section must now be initialized; in other words, each of our 32 stars must be placed in their
initial positions onscreen and given the depth values that determine their speed and brightness level. This
is handled by a subroutine called Init_Stars().

The subroutine works by iterating through each star in the starfield (the 4-byte star data structure
described above), and giving them a random X location and a random depth value. The first problem here
should be obvious—how do you generate a random number on the SX52?

This issue is more complex than you may think. If you’re used to programming in high-level languages
like C and C++, you take your standard library’s random number functions for granted. In the world of low-
level system programming, however, there usually isn’t room to write an entire random number generator,
especially on a system with only 4K of program memory like the SX52. And even if there were, you’d
have to write it yourself, because there isn’t a standard library to include in the first place. Instead, this
problem is solved with lookup tables.

Chapter 8: Case Study: The Starfield Demo

XGameStation™ Micro Edition User Guide
147

Random number lookup tables are nothing more than a string of numbers generated beforehand by a
random number generator and saved for later use. Once this list is generated, it’s formatted in a special
way using the RETW instruction:

Rand_Num_0_255
 JMP PC + W
 RETW $29, $6B, $D6, $EB, $2C, $A9, $03, $21
 RETW $BB, $EF, $5F, $5F, $4C, $FC, $10, $EC
 RETW $BE, $D4, $ED, $51, $06, $45, $4D, $99
 RETW $25, $8E, $51, $65, $53, $05, $5C, $33
 RETW $EC, $3F, $54, $16, $A7, $22, $CD, $CC
 RETW $8F, $60, $D4, $F3, $4E, $4A, $60, $3D
 RETW $CB, $EE, $2F, $68, $16, $75, $93, $6D
 RETW $35, $33, $F4, $0D, $4C, $E6, $05, $39

The interesting thing here is that even though this is conceptually just a table of data, it is actually
implemented as executable code. In order to read from this table, it is called as if it were a subroutine, like
so:

CLR W ; Set W to zero
CALL Rand_Num_0_255 ; Read the random number at index 0 and store it in W

Once this function is called, execution moves to the JMP PC + W instruction seen at the beginning of the
table. This is a special instruction that, as it appears, jumps to the current instruction (the JMP instruction
itself) plus the current value of W. So, if W is zero, execution will jump to the first instruction after the JMP,
which is the first value on the first RETW line ($29). If W is one, it will jump to the second value on the first
RETW line ($6B). If W is two, it will jump to the third value on the first RETW line ($D6). In other words, if we
think of each value in each RETW instruction as a separate item in the table, then the value of W upon
entering this subroutine is really an index into this table.

The other half of the puzzle is RETW itself. This instruction is just like RET or RETP, except that it sets W to
the specified value before jumping back to the function, which is similar to a function’s return value in a
high-level language like C or Java. Before calling the subroutine, W contains the index of the desired item
to read. After returning, W contains the value found at that index. This is how CALL, JMP PC + W, and
RETW work together to implement very fast lookup tables.

Lastly, in case you’re confused, listing multiple comma-separated values in a RETW instruction is the
equivalent of separate RETW instructions for each of those values. It is simply a notional convenience, but
in the final object code, there is a separate RETW opcode emitted for each value listed. For example,

RETW 10, 20, 30

is the same as

RETW 10
RETW 20
RETW 30

The following is the source code to the Init_Stars() subroutine:

Chapter 8: Case Study: The Starfield Demo

XGameStation™ Micro Edition User Guide
148

Init_Stars

 MOV FSR, BANK_STARFIELD ; Point to the base of the star array
 MOV t0, #STAR_COUNT ; Number of stars to initialize
 CLR t2 ; <t2> is the random number table index

:next_star

 ; Get a random value between 0 and 159 by first getting a random value
 ; between 0 and 128 and centering it.
 MOV W, t2 ; Get the next random table value
 CALL Rand_Num_0_255
 AND W, #127 ; W %= 128
 MOV t3, W ; Save the X coordinate in <t3>
 ADD t3, #16 ; Center the X within 160 pixels
 MOV IND, t3 ; Set the star X coordinate
 INC FSR ; Move to the next star attribute

 ; Get a random depth value
 MOV W, t2 ; Get the next random table value
 CALL Rand_Num_1_4
 MOV IND, W ; Set the star "depth"
 INC FSR ; Move to the next star attribute

 ; Clear the low byte of the X coordiante
 MOV IND, #0
 INC FSR

 ; Clear the reserved attribute
 MOV IND, #0
 INC FSR

 INC t2 ; Move to the next value in the random tables
 DJNZ t0, :next_star ; Move to next star

 _BANK (BANK_TV_SIGNAL) ; Return to the default bank

End_Init_Stars

Once you understand how random numbers are implemented, and how the stars are stored in memory
(covered above), the subroutine itself is pretty self-explanatory. First, the FSR register is initialized to the
base address of the star array. This points to the first byte of the first star record. Then, a counter is
initialized in t0 to the STAR_COUNT constant (32) to loop through each star in the array.

At each iteration of the loop, a random number between 0 and 255 is read from the table and converted
to an appropriate horizontal star location, and stored in that first byte. Remember that the star location is
a 16-bit fixed point value; the first byte is the whole part of the number, and the second is the fractional
part. To start each star off, all that must be set is the whole part. This means that the initial locations for
the stars might be 122.0, 11.0, 76.0, 150.0, etc.

FSR is then incremented, pointing it at the second byte of the first record, which is where the depth value
is stored. A second lookup table is used to generate a random value between 1 and 4 instead of 0 and
255. Since depth values range from 1 to 4 (meaning stars can move between 1 and 4 pixels at a time),
this table allows the depth field of each star to be initialized very easily. The value is simply read form the
table and stored directly.

Chapter 8: Case Study: The Starfield Demo

XGameStation™ Micro Edition User Guide
149

FSR is again incremented, pointing it at byte three of the record, where the fractional part of the X-
coordinate is stored. Again, there is no need to start stars off on fractional locations, so this is simply
cleared to zero. FSR is incremented a third time to point it at the record’s last byte, the reserved field. This
field is cleared simply for the sake of being neat and tidy. Lastly, FSR is again incremented, now pointing
at the first byte of the next record, and the loop iterates so that record may be initialized as well.

8.1.2.2 - Anatomy of the Video Kernel

The heart of the program is, of course, the video kernel. This continuous loop implements the two most
important parts of the program: generating the video signal and implementing the “core logic” of the
program itself. Not surprisingly, this usually comprises at least 90% of any XGS ME’s source code and
must be organized cleanly.

Although a complete treatise on the generation of video signals is provided in the main eBook, Design
Your Own Video Game Console, the basic anatomy of a video kernel will be covered here as well.

Generating a video signal really means sending the television a series of frames. A frame is a single, full-
screen image, composed of roughly 200 horizontal scanlines. Each scanline is a strip of color data
extending from one side of the screen to the other, broken up on regular intervals to form pixels. When
you organize these scanlines vertically, the end result is a complete static image. Figure 8.5 illustrates the
structure of a single TV frame.

Figure 8.5 – Conceptual format of a TV frame.

The entire video signal is sent over a single wire, which means all data is sent over time in a serial
fashion—pixel after pixel, scanline after scanline, frame after frame. This data must be sent in adherence
to an extremely timing-sensitive sequence. The TV can’t stop to wait for you to “catch up” if you take too

Chapter 8: Case Study: The Starfield Demo

XGameStation™ Micro Edition User Guide
150

long sending something, nor can it keep pace if you send data too fast; it just keeps displaying whatever
data, or lack of data, it has received. If your code loses synchronization with the TV at any time, the
image displayed onscreen will immediately begin degrade and ultimately fall apart completely. Because of
this, the code responsible for generating this signal must be timed extremely precisely. You will note that
in most of the XGS ME demo programs, each instruction in the signal-generation code is commented with
a number, such as (2) or (4). This is the number of clock cycles the instruction takes to execute, and
when converted to a time in microseconds (based on the 80 MHz clock speed of the SX52), the timing of
the signal generation code can be made to sync up exactly with the timing expected by the TV.

It is beyond the scope of this guide to cover the exact details of TV signal generation, but for the sake of
understanding the starfield demo, we will now take a brief look at the major parts of the signal generation
routines. Remember that the real info is found in the main eBook, Design Your Own Video Game
Console.

8.1.2.2.1 - Overview

The SX52 writes all TV signal data to the RE port. This port inputs into the XGS ME’s video subsystem,
which completes the signal and sends it to the TV. As for the signal itself, the following steps are taken to
generate a frame of TV data according to the standard TV signal specification:

1. Start the frame by generating the screen’s top overscan. This is a region of approximately 20-40
blank scanlines that precedes the visible part of the frame.

2. Generate each scanline of visible screen data. Each scanline begins with a brief period of horizontal
sync, after which follows the visible scanline itself. At regular intervals along the scanline, proportional
to the width of a pixel on the physical screen, the color is changed to the next pixel’s value.

3. The frame is completed by drawing the bottom overscan, another region of blank scanlines roughly
the size as the top overscan, located below the visible region of the frame.

4. A relatively long period of time is required for the TV’s electron guns to reset to the top of the screen
again, having worked their way down to the bottom while drawing the frame. This period is called the
vertical sync, and, fortunately for us, gives us plenty of time to perform the core logic of the program
in preparation for the next frame.

If that didn’t make sense to you, don’t worry—the purpose of this tutorial is not to teach you the ins and
outs of video signals. For the complete, ground-up coverage of this subject you’ll need in order to write
your own XGS ME games and demos, refer to the main eBook, Design Your Own Video Game
Console. For now, simply understand that the overscan regions and vertical sync are necessary in order
for the TV to properly understand and translate the image data sent in between, and that the code shown
in this section is capable of generating these signals. Figure 8.6 illustrates this process visually.

Chapter 8: Case Study: The Starfield Demo

XGameStation™ Micro Edition User Guide
151

Figure 8.6 – Basic anatomy of a TV frame.

8.1.2.2.2 - Drawing the Frame

During each scanline, aside from formatting the TV signal properly, our job is of course to send out the
right pixel data to draw the screen as we wish it to be seen. As a given frame is being drawn, the raster is
always moving left-to-right, top-to-bottom. This is how we must approach the process of translating our
star data into the image displayed on the screen.

The starfield draws 192 scanlines of vertical resolution in between the top and bottom scanline regions.
Within reason, this number can be increased or decreased by adjusting the size of these scanline regions
to suit the vertical resolution to your particular needs.

The current scanline is stored in a counter called scanline which counts from 192 down to 1, since the
SX52 instruction happens to make it easier to count from a given number down to zero, rather than from
zero up to a given number. Since most graphics displays think in terms of the upper-left corner being
defined as coordinate 0, 0, this somewhat inverted approach should be kept in mind.

The first step in drawing the scanline is determining the background color to draw behind the stars. The
starfield background is a purple gradient, which is easy to implement by simply scaling the current
scanline down to a range that can be used as a luminance value. Bit rotation is used to scale the scanline
value down by a factor of 32:

 ; Get the next color in the sky gradient, based on the scanline counter

 MOV t4, #192 ; (2) Get the current scanline, inverted
 SUB t4, scanline ; (2)
 CLC ; (1) Divide it by 32

Chapter 8: Case Study: The Starfield Demo

XGameStation™ Micro Edition User Guide
152

 RR t4 ; (1)
 CLC ; (1)
 RR t4 ; (1)
 CLC ; (1)
RR t4 ; (1)
 CLC ; (1)
 RR t4 ; (1)
 CLC ; (1)
 RR t4 ; (1)
 MOV t5, #COLOR14 ; (2) Set the base color of the sky
 ADD t5, t4 ; (2) Modulate the intensity to the current level

Note that the clock cycles required by each instruction are noted in the comments. This is because the
logic that draws the scanline will most likely not take up the exact amount of time for which the TV
expects the scanline signal to last. Since it will probably take somewhat less time, an empty delay must
follow this logic for the remainder of the time to keep the program in sync with the TV. t5 now contains
the background color value for the current scanline.

Since there are 192 scanlines and only 32 stars, it is obvious that not every scanline will contain a star. In
fact, most scanlines won’t. Because of this, the scanline logic must now branch off into one of two
possibilities—scanlines that are simply pure background color, and scanlines that contain a star. The
logic for determining this is simple—since there are 32 stars and 192 scanlines, drawing a star on every
6th scanline will space them out evenly down the screen. Since 6 is not an easy divisor when dividing with
bit shifting, a counter stored in t3 is used:

 ; Determine if a star lies on this scanline and branch to the proper
 ; scanline rendering code

 INC t3 ; (1) Increment the scanline counter
 CJB t3, #192 / STAR_COUNT, no_star ; (4/6) Reset after each star is
 ; drawn
 CLR t3 ; (1)
 NOP ; (1)
 JMP star_scanline ; (3) Draw a scanline containing
 ; a star
no_star
 JMP blank_scanline ; (3) Draw an empty/blank scanline

Don’t worry if it sounds like this even spacing will make the starfield look unnatural—due to each star
moving at a random speed and being drawn with a random brightness, it does not create a noticeable
pattern as more than two stars rarely line up.

Scanlines that do not contain a star are decidedly easy to rasterize. The appropriate background color
(now stored in t5) is simply sent out to the video hardware, and a long delay is used to hold that color for
the duration of the scanline:

blank_scanline

 MOV RE, t5 ; (2) Set the base color of the sky
 DELAY (4208 - 2 - 28) ; Delay for the duration of the scanline

 DJNZ scanline, raster_scanline ; (2/4) Next scanline

In the case of non-blank scanlines, the logic is more complex. Since we have no control over when each
pixel is drawn, we must simply keep up with the TV’s expectation of the scanline being sent left-to-right.

Chapter 8: Case Study: The Starfield Demo

XGameStation™ Micro Edition User Guide
153

On a more traditional computer display in which we can actively draw any pixel at any time, drawing the
star would be as easy as setting the corresponding value in video memory. By contrast, we must
passively wait for the point at which the TV is drawing the pixel containing the star before we can draw it,
and draw the background color the rest of the time. Figure 8.7 visualizes this concept.

Figure 8.7 – A timeline view of when a star is drawn within the scanline signal.

The following code is responsible for drawing the star at the right time by setting the background color,
waiting for the TV to reach the star, setting the star color (with a brightness based on its depth value), and
then restoring the background color and delaying until the end of the scanline is reached:

star_scanline

 ; **** Get the attributes of the current star

 MOV FSR, BANK_STARFIELD ; (2) Set the base offset of the star array
 MOV t0, t2 ; (2) Get the address of the star in <t0>
 CLC ; (1) Multiply index by 4 for address
 RL t0 ; (1)
 RL t0 ; (1)
 ADD FSR, t0 ; (2) Add the star offset to the base
 MOV t1, IND ; (2) Save the star's X coordinate in <t1>
 INC FSR ; (1) Move to the next attribute
 MOV t0, IND ; (2) Save the star's depth in <t0>
 CLC ; (1) Shift right 4 places to get a
 ; real intensity value
 RR t0 ; (1)
 RR t0 ; (1)
 RR t0 ; (1)
 RR t0 ; (1)
 MOV t4, #COLOR14 ; (2) Set base color of the star
 ADD t4, t0 ; (2) Set the star's intensity
 _BANK (BANK_TV_SIGNAL) ; (2)
 INC t2 ; (1) Move to the next star

 ; **** Draw the scanline

 MOV t0, #160 ; (2) Rasterize 160 pixels across
 ; the scanline
pixels_loop

 CJNE t0, t1, empty_pixel ; (4/6) Is this the star pixel?
 NOP ; (1)
 NOP ; (1)
star_pixel
 MOV RE, t4 ; (2) Set the star's color
 JMP pixel_set ; (3) The pixel color is set
empty_pixel
 MOV RE, t5 ; (2) Set the base color of the sky

Chapter 8: Case Study: The Starfield Demo

XGameStation™ Micro Edition User Guide
154

 NOP ; (1)
 NOP ; (1)
 NOP ; (1)
pixel_set

 DELAY (10) ; Pad the remainder of the pixel
 DJNZ t0, pixels_loop ; (4) Next pixel

 ; **** Complete the scanline

 DELAY (48 - 28 - 26) ; Pad the remainder of the scanline

 DJNZ scanline, raster_scanline ; (2/4) Next scanline
 JMP scanlines_done ; (3) Skip past the scanline
 ; rasterizer below

The actual drawing routine is fairly simple if you understood how the initialization routine worked. In this
case, a counter stored in t2 tracks which star to draw next. This counter must be multipled by 4 to
convert it into an actual pointer to the star record’s location in memory. This pointer is stored in t0, which
is used as a base reference to the star record’s field.

The star is drawn using only the whole part of its 16-bit fixed point X coordinate; the fractional part is only
used when moving the star, so we need only read the first byte to determine where onscreen the star
should appear. This value is stored in t1. After that, the brightness is read, added to COLOR14 (the white
base color of the stars), and stored in t4.

With the X-coordinate and brightness read from the array, the actual drawing can take place. This is done
with two loops. The first loop, after the background color is set, delays from the start of the scanline until
just before the star must be drawn. This effectively rasterizes the blank sky on the left side of the star. The
star is then drawn. The background color is quickly set once again (to ensure the star only occupies a tiny
fraction of the screen), and the second loop stalls until the end of the scanline is reached, filling in the
blank sky on the star’s right side.

8.1.2.2.3 - Updating the Demo

At each vertical sync, as the TV is re-synchronizing itself in order to draw the next frame, we’ll have plenty
of time to update the program. This updating is ultimately done by a subordinate called
Update_Stars(), listed below:

Update_Stars

 MOV FSR, BANK_STARFIELD ; (2) Point to the base of the star array
 MOV t0, #STAR_COUNT ; (2) Number of stars to initialize

:next_star

 ; Get the star's depth
 INC FSR ; (1) Skip to the depth attribute
 MOV t1, IND ; (2) Save the depth attribute

 ; Perform a 16-bit "fixed point" addition on the 8.8 X value
 INC FSR ; (1) Skip to the low byte of X
 CLC ; (1)
 ADD IND, t1 ; (2) Add the star's speed to it

Chapter 8: Case Study: The Starfield Demo

XGameStation™ Micro Edition User Guide
155

 DEC FSR ; (1) Move back to the high byte of X
 DEC FSR ; (1)
 ADDB IND, C ; (2) Add the carry from the low byte to the high byte

 ; Bounds check the star's X coordinate
 CJB IND, #160, :in_screen ; (4/6)
 NOP ; (1)
 NOP ; (1)
 CLR IND ; (1) Clear X.hi
 INC FSR ; (1)
 INC FSR ; (1)
 CLR IND ; (1) Clear X.lo
 JMP :bounds_checked ; (3)
:in_screen
 INC FSR ; (1) Skip to the last attribute
 INC FSR ; (1)
 NOP ; (1)
 NOP ; (1)
 JMP $ + 1 ; (3)
:bounds_checked

 INC FSR ; (1) Skip to the reserved attribute

 ; Handle the reserved attribute
 MOV IND, #0 ; (2)
 INC FSR ; (1) Skip to the next star

 ; Move to next star
 DJNZ t0, :next_star ; (2/4)

 _BANK (BANK_TV_SIGNAL) ; (2) Return to the default bank

 RETP ; (3)

 ; **** Total: (32 * STAR_COUNT) + 2 + 3 + 2 + 2

End_Update_Stars

This subroutine is very similar to Init_Stars(). It loops through each star in the array, but this time,
instead of initializing the values, it simply moves the star to its next location by performing a simple 16-bit
fixed point addition. The depth value is read and stored in t1. t1 is then added to the fractional byte of
the X-coordinate. The carry flag, either one or zero, is then added to the whole byte. If the fractional byte
wraps-around from 255 to 0 when the depth value is added to it, the carry flag will be set and the whole
byte will be incremented. This is how the multi-byte addition allows the stars to move at a smooth,
controlled rate; by altering the depth value, which is the value by which the fractional part increments, we
can control how fast the whole part increments as well. Since the whole part is all we use to actually draw
the star within the scanline, this has a direct impact on how long the star appears to take to move across
the screen.

A bounds check is then performed to see if the star has moved beyond the edge of the screen. If so, it is
reset to the other edge, allowing each star to loop at its own pace. Since the stars all move at different
speeds, it is not easy to tell that the stars are looping, and it appears as if unique stars are constantly
scrolling into view.

Chapter 8: Case Study: The Starfield Demo

XGameStation™ Micro Edition User Guide
156

8.2 - Conclusion
That’s it! You’ve seen how this graphical demo is initialized, and how it is both displayed and updated at
each frame. During the initialization, drawing and updating you can do anything you want, from displaying
a starfield to implementing an entire game. In other words, what we have covered is a flexible skeleton
upon which any graphical XGS ME program can be built.

Of course, not every important detail has been covered here, as this is intended primarily as a superficial
guide to give you the idea of what’s involved in writing graphical XGS ME programs without drowning you
in every relevant detail of the exact implementation. For this, please refer to the demo’s full source code,
as well as the main eBook, Design Your Own Video Game Console, of course.

Chapter 9: Case Study: Racing Engine Demo

XGameStation™ Micro Edition User Guide
157

Chapter 9: Case Study: Racing Engine Demo
The last chapter, a case study on the graphical starfield demo, covered numerous aspects of writing
graphical XGS ME programs, most of which pertained to the all-important TV signal generation. Since this
case study covers a considerably more complex program, it will not concern itself with listing this
information again. Please read the last chapter’s case study before attempting to read this one, as much
of this chapter is dependant on information presented in the last.

The racing demo is a reasonably complex example of detailed, full-screen graphics with a pseudo-3D
perspective. It creates a smoothly animating race track with a distant mountain range as its backdrop that
scrolls appropriately as the driver turns. Special details are included to enhance the visuals, such as a
blue gradient effect in the sky and the classic red-and-white track border that scrolls with the road. See
Figure 9.1 for a screenshot of the racing engine demo in action.

The racing engine demo can be found in the Demos\NTSC\Racer directory.

Figure 9.1 – The racing engine demo.

There are a handful of major elements required to make this demo work:

• The two-digit speed printed at the top

• The blue-gradient sky

• The mountain range that scrolls with the turns of the track

Chapter 9: Case Study: Racing Engine Demo

XGameStation™ Micro Edition User Guide
158

• The track and its pseudo-3D perspective, as well as its ability to warp into the shape of a left or right
turn

• The red and white track markers that scroll along with the player’s movement

• Joystick input from the player

Once again, since the last chapter covered the aspects of writing an XGS ME program that are not
specific to this demo, they will not be covered again here since they are more or less the same. As a
result, this chapter will focus entirely on the specifics of how each element was implemented and each
effect achieved.

9.1 - Data Structures
Unlike the starfield demo and its star array, the racing engine demo does not have a large, central data
structure upon which everything else is based. Because of this, it would make more sense to individually
cover each aspect of the demo and its related data, rather than cover all of the data first and all of the
code afterwards.

9.2 - The Sky Background and Mountain Rage
The first major element of the racing engine demo to discuss is the background, consisting of a blue
gradient sky and a scrollable mountain range. The mountain range in particular is an illuminating look at
how complex graphics can be implemented on the XGS ME using simple tricks to overcome its incredibly
small amount of on-chip memory.

The mountain range is a detailed, high-resolution graphic that covers the entire screen. It is a total of 256
pixels across, which is even wider than the screen’s horizontal resolution. The mountain range is a total of
44 scanlines tall, which means that a bitmap capable of containing this entire mountain range would be
44 x 256 = 11K! With only 262 bytes of RAM and 4K of program space, this is definitely impossible. So
where does the mountain range come from?

9.2.1 - The Mountain Height Table

The answer is a lookup table similar to the one we discussed in the last chapter for producing pseudo-
random numbers. Since a complete 11K bitmap is not possible on the SX52 (without using the slower,
off-chip SRAM), the mountain range had to be represented in a form that only stored the absolute
minimum amount of data. It also had to be fast, however, because each pixel drawn in the mountain
range only has about 20 clocks to perform its logic. This means that any sufficiently sophisticated
compression algorithm would probably be too complex to implement on a per-pixel basis.

The solution was a height map. A height map, in this case, allows us to think of the mountain range as a
simple one-dimensional entity, rather than a two-dimensional bitmap. Why is the mountain range only

Chapter 9: Case Study: Racing Engine Demo

XGameStation™ Micro Edition User Guide
159

1D? Because it only changes along the X-axis. If you were to look at any 1-pixel vertical strip of the
mountain range, you would find that above the mountain range, the strip is solid sky, and below the
mountain range, it is solid mountain. Figure 9.2 illustrates this.

Figure 9.2 – Analyzing 1-pixel vertical strips of the mountain range graphic.

Because of this, when drawing any pixel in the background, we do not need to perform a 2D bitmap
lookup to determine the color; all we need to know is whether or not we are above the level of the
mountain range at this particular point on the X-axis. If so, we draw using the sky background color. If not,
we draw using the mountain color. Think of the mountain range table as any mathematical function (such
as trig functions), except it’s drawn not as a line, but as one solid color above, and another solid color
below.

This effectively removes the Y-axis from the definition of the mountain range and thus reduces the
memory needed from an impossible 256 x 44 bytes to a more-than-possible 256 bytes. With a 256-byte
single lookup table, an entire mountain range can be stored:

mount_line
 DW 15,14,14,13,11,10,09,08,06,05,06,06,07,08,09,11
 DW 12,14,16,18,19,20,22,24,24,24,25,26,26,24,23,23
 DW 22,21,20,19,19,18,18,18,17,17,17,17,17,18,18,18
 DW 19,20,21,22,23,23,24,24,25,25,26,26,27,27,28,28
 DW 27,27,26,25,25,24,23,23,23,23,23,24,24,25,26,27
 DW 28,28,28,28,28,28,29,29,29,29,30,30,31,31,32,33
 DW 34,35,36,36,36,36,35,34,33,32,31,30,27,24,23,22
 DW 23,23,24,24,25,26,27,27,28,28,29,32,34,34,35,35
 DW 36,37,36,35,34,33,32,31,30,30,29,28,27,26,25,25
 DW 24,24,24,23,22,21,20,20,19,19,18,17,17,16,15,15
 DW 16,17,17,18,19,19,19,18,17,16,15,14,14,13,13,12
 DW 12,12,12,11,11,11,12,12,13,14,15,16,17,19,21,22
 DW 23,24,24,25,27,28,29,31,30,30,29,28,27,26,25,25
 DW 24,24,24,23,22,21,20,20,19,19,18,17,17,16,15,15
 DW 16,16,17,17,18,19,20,22,24,25,26,27,27,26,25,25
 DW 24,24,24,23,22,21,20,20,19,19,18,17,17,16,15,15

To avoid confusion, note that this table has been condensed to fit the page; it appears twice as wide and
half as tall in the actual source code.

Chapter 9: Case Study: Racing Engine Demo

XGameStation™ Micro Edition User Guide
160

NOTE

While the mountain range height table data could be generated in numerous ways, it
was literally created by hand-editing each value in the table seen above, recompiling,
and making changes until it looked right. While it would be overkill for a program such as
this, any program that needs a lot of high-quality lookup-table-based graphics would
benefit from a graphical utility that translates mouse-drawn curves and shapes into a
table as seen above.

9.2.2 - Another Approach to Lookup Tables

Something worth noting is that this lookup table is not implemented exactly like the random number tables
from the last chapter were. Note that the JMP PC + W and RETW instructions are nowhere to be found.
Instead, this particular approach to lookup tables uses the DW directive, which directly writes 12-bit word
values to the program memory.

To read from a table such as this, a new instruction called IREAD is used. IREAD accepts a 12-bit
program memory address stored in M:W and returns the 12-bit program word found at that address, also
in M:W. In both cases, the high-nibble is stored in M, and the low-byte is stored in W.

The advantage to using IREAD is that it can be used to read from much larger tables; since W alone is
used as the table index when reading with the CALL instruction, only 256 total bytes can be read. Using
M:W and IREAD allows for a 12-bit address space and thus tables up to 4096 bytes (although in reality
such a table would not be practical).

The disadvantage is that IREAD is somewhat slower; the IREAD instruction alone takes 4 clock cycles to
execute, whereas CALL only takes 3. Furthermore, loading both M and W with a table index of course
takes more time than simply loading W, making the IREAD approach more costly as far as clocks go.

9.2.3 - Drawing the Background

Now that we understand that data structure behind the mountain range, let’s talk about drawing it. To
draw each pixel of the background, the following steps are taken:

• Determine the current color in the background gradient using the scanline counter.

• Determine whether or not the pixel is above or below the mountain range at that location along the X-
axis.

• If the pixel is above the mountain, draw it using the sky background color.

• If the pixel is below the mountain, draw it using the mountain color.

Chapter 9: Case Study: Racing Engine Demo

XGameStation™ Micro Edition User Guide
161

In the actual implementation, each scanline is drawn in a single loop. The sky color for that scanline is
determined outside of that loop, saving each pixel from having to re-calculate the color itself. Here is the
code:

 ; 44 scanlines of lower sky are left after above loop
draw_sky_loop_l

 ; **** SET UP SCANLINE **

 CALL @Start_Scanline

 ; **** DRAW SCANLINE **

 ; **** Set up the scanline

 ; Put the color of the current sky scanline in <t1>
 MOV t0, #64 ; (2) Base the gradient on the
 ; scanline counter
 SUB t0, scanline ; (2)
 CLC ; (1) Divide by 8 for 8 sky
 ; color shades
 RR t0 ; (1)
 CLC ; (1)
 RR t0 ; (1)
 CLC ; (1)
 RR t0 ; (1)
 ADD t0, #2 ; (2) Increase the brightness
 MOV t1, #COLOR_SKY_BASE ; (2) Set the sky's base color
 ADD t1, t0 ; (2) Modulate the sky intensity

 ; **** Render each pixel of the scanline

 MOV t0, #182 ; (2) <t0> is the pixel counter
 MOV t3, #mount_line ; (2) Start at the base of the
 ; table base address
 ADD t3, bg_scroll ; (2) Add background scroll
 ; offset
sky_pixel_loop_l

 ; Put the next mountain Y pixel location in <t2>
 MOV M, #mount_line >> 8 ; (1) Point M:W at the table
 MOV W, t3 ; (1) Complete the address
 IREAD ; (4) Read the table value
 MOV t2, W ; (1) Put the value in <t2>
 INC t3 ; (1) Move to the next pixel

 ; If the current pixel is above the mountain line, draw sky; otherwise,
 ; draw the mountain color
 CJA scanline, t2, sky_pixel_l ; (4/6)
 NOP ; (1) Pad this branch of the
 ; conditional
 NOP ; (1) Pad this branch of the
 ; conditional
 MOV RE, #COLOR_MOUNT ; (2) Draw a mountain color pixel
 JMP pixel_done_l ; (3)
sky_pixel_l
 MOV RE, t1 ; (2) Render the sky
 JMP $ + 1 ; (3) Pad the jump above
pixel_done_l

 DJNZ t0, sky_pixel_loop_l ; (2/4) Next pixel

 DJNZ scanline, draw_sky_loop_l ; (2/4) Next scanline

Chapter 9: Case Study: Racing Engine Demo

XGameStation™ Micro Edition User Guide
162

9.3 - Drawing the Race Track
The second major visual element of the racing engine demo is of course the race track itself. Like the
mountain range, the track consists of many large, solid elements that would take massive amounts of
memory if they were somehow based on raw bitmaps.

9.3.1 - A Procedural Race Track

A solution similar to the height map used in the last section once again comes to the rescue. If you look at
the track, you can see that like the mountain range, it can be defined rather easily using only a couple of
data points, rather than a complete 2D bitmap to cover the entire region of the screen. This time, break
the track up into horizontal strips and analyze them as in Figure 9.3.

Figure 9.3 – Analyzing horizontal strips of the racetrack.

Notice that only two color changes are necessary to draw a black racetrack on a green grass background.
The beginning of the scanline is always green, which is held until the left edge of the racetrack strip is
reached, at which point the color switches to black. Black is then held until the right edge of the track strip
is reached, at which point the color switches back to green until the end of the scanline. It would not be
difficult to expand this process slightly to include two extra data points so the red and white stripes along
the track can be drawn as well. The technique is the same either way.

The most important lesson to learn here is the concept of using procedural graphics instead of bitmaps.
Since only the smallest bitmaps can fit economically within the limited address space of the XGS ME
(without using the off-chip 128K SRAM, of course), large graphics can usually only be done with clever
alternatives that use code to generate an image based on a set of rules, rather than data to store it. In

Chapter 9: Case Study: Racing Engine Demo

XGameStation™ Micro Edition User Guide
163

addition to the huge savings on memory, procedural graphics also often boast fluid movement and
flexibility that would be difficult or impossible with standard bitmaps.

9.3.2 - Adding Perspective to the Track

It is now clear that a convincing track can be drawn using just a few data points that cause color changes
at the proper times along each scanline. The question now, is, where do these data points come from?
The track must appear narrow near the top of the screen and wide near the bottom to give the illusion of a
three-dimensional perspective. This means our data points must be close together near the top of the
screen and move apart from each other as they approach the bottom.

We could perhaps use a lookup table as we did with the mountain range, containing the slope of a
diagonal line that matches the desired angle for the race track. This would work, but unlike the mountain
range, the data needed to trace the slope of a diagonal is not unpredictable and arbitrary like the shape of
mountains. It is in fact so predictable that a table is not needed at all; all that is needed is a tracking
variable that follows a line’s slope as the scanlines are drawn. Figure 9.4 demonstrates this idea.

Figure 9.4 – Using tracking variables to follow the slope of a line as the track is drawn down the
screen.

The algorithm is actually quite simple:

• Initialize a 16-bit fixed-point tracking variable near the center of the screen, representing the distant
end of the track.

• At each scanline, draw green from the left side of the screen to the left edge of the track. Use black to
draw from the left edge of the track to the right edge. Use green again to draw from the right edge of
the track to the right side of the screen.

• After drawing a scanline, perform a 16-bit fixed-point subtraction on the tracking variable to slowly
move it away from the center of the screen, allowing the black (road) portion of each scanline to
broaden as if it were coming closer to the viewer. Using fixed-point math instead of a simple 8-bit
value allows the any slope to be used easily rather than forcing the track to follow a 45 degree angle.

Chapter 9: Case Study: Racing Engine Demo

XGameStation™ Micro Edition User Guide
164

Two separate tracking variables, of course, are used in the actual program so both the track, as well as
the red and white border, can be drawn with reasonably correct perspective.

9.3.3 - Making Turns

Equally important to the perspective of the track is giving it the ability to bend as if its path was curving.
This technique is actually rather simple, and simply requires the use of yet another lookup table to apply a
predefined curve to the track scanlines as they’re drawn from top to bottom.

9.3.3.1 - Deforming the Racetrack

To understand this technique, imagine if a specific value were added to every datapoint on each scanline
as they were drawn. If the value was positive, it would shift the entire track towards the right side of the
screen. If it were negative, the track would shift to the left. This effect is illustrated in Figure 9.5.

Figure 9.5 – Shifting the track left or right by adding an unchanging value to each scanline’s data
points.

Now, imagine that another tracking variable was maintained and added to the location of every data point
as each scanline was drawn, instead of the unchanging value in the last example. If this tracking variable
increased after each scanline, the road would appear to veer off at an angle, as shown in Figure 9.6.

Chapter 9: Case Study: Racing Engine Demo

XGameStation™ Micro Edition User Guide
165

Figure 9.6 – Bending the track along a diagonal by adding an increasing value to each scanline’s
data points

Finally, imagine that instead of increasing the new tracking variable by an unchanging value at each
scanline, thus bending the track linearly, the tracking variable instead increased in some non-linear
fashion, perhaps exponentially. This would cause the track to curve, because the rate of increase would
be different at the top of the track than at the bottom. Figure 9.7 illustrates this.

Figure 9.7 – Curving the track by adding a non-linear tracking variable to each scanline’s data
points.

The trick is to step through a curve and apply it to the scanlines as they’re drawn in order to shift the track
towards the desired shape. The only question remaining is how to gradually transition from a straight
track to a track that moves in one direction or the other. Since the track can’t suddenly switch from
perfectly straight to completely curved, there needs to be a way for the curve to be applied gradually.

Figure 9.8 presents a solution. Imagine that the curve data is stored in a lookup table such that each
index in the table corresponds to one scanline on the track. If the entire table were applied such that each
scanline were affected, the entire track would warp into a full curve shape. Now, if only the first half of the
table were applied to the track, thus affecting only the top half of the road scanlines, the curve would be
half as apparent and appear to be halfway down the road.

Chapter 9: Case Study: Racing Engine Demo

XGameStation™ Micro Edition User Guide
166

Figure 9.8 – “Raising” and “lowering” a curve table into and out of the scanlines to control the
perceived distance of the curve.

In other words, by “lowering” and “raising” the table into and out of the track scanlines, the curve shape
can appear to be moving towards or away from the player, just like a real turn on an actual road.

9.3.3.2 - Generating the Curve Data

As for the curve data itself, the easiest approach is simply to sample the appropriate segment of a sine
wave. A C program was used to generate and format the following table based on the standard library’s
sin() function. The result was then simply copied and pasted into the racer demo source code.

curve_table

 ; Left turn curve
 DW $E3, $E4, $E5, $E6, $E6, $E7, $E8, $E9
 DW $EA, $EA, $EB, $EC, $ED, $EE, $EE, $EF
 DW $F0, $F0, $F1, $F2, $F3, $F3, $F4, $F5
 DW $F5, $F6, $F6, $F7, $F8, $F8, $F9, $F9
 DW $FA, $FA, $FB, $FB, $FC, $FC, $FD, $FD
 DW $FD, $FE, $FE, $FE, $FE, $FE, $FE, $FE
 DW $FE, $FE, $FE, $FE, $FE, $FF, $FF, $FF
 DW $FF, $FF, $FF, $FF, $FF, $FF, $00, $00

 ; Right turn curve
 DW $1D, $1C, $1B, $1A, $1A, $19, $18, $17
 DW $16, $16, $15, $14, $13, $12, $12, $11
 DW $10, $10, $0F, $0E, $0D, $0D, $0C, $0B
 DW $0B, $0A, $0A, $09, $08, $08, $07, $07
 DW $06, $06, $05, $05, $04, $04, $03, $03
 DW $03, $02, $02, $02, $02, $02, $02, $02
 DW $02, $02, $02, $02, $02, $01, $01, $01
 DW $01, $01, $01, $01, $01, $01, $00, $00

Note that the table is split into two blocks. The first block is the curve used to form left turns, while the
second is for right turns.

Chapter 9: Case Study: Racing Engine Demo

XGameStation™ Micro Edition User Guide
167

9.3.4 - Summary

All told, the there were a number of main steps in implementing the track. The first was approaching the
track in a manner similar to the mountain range—by recognizing that the track is really just defined by
lines that mark the left and right sides of the track and the striped track border. Next, understanding how
these lines can be made diagonal to produce a perspective effect for the track. Lastly, a curve table was
applied to the track to varying degrees to create a flexible and easily controlled turn effect that works in
both directions.

Coupled with the mountain range described in the previous section, the racing engine demo creates
colorful, detailed, full screen graphics without the huge memory overhead usually associated with such
results. This is the trick to writing graphical programs on the XGS ME—figuring out ways to produce
complex and meaningful graphic effects, images and animations without resorting to bitmaps or other
large data structures.

9.4 - Player Input
Player input is handled in a subroutine called Handle_Input():

Handle_Input

 ; **** READ THE JOYSTICK **

 CALL @Read_Joystick

 ; **** HANDLE STEERING **

 ; Don't allow turning if the player isn't moving
 BANK BANK_GAME
 MOV t0, speed
 BANK BANK_MAIN
 CLC
 CSA t0, #0
 JMP :skip_steering

 ; Turn left
 SNB data8.2
 JMP :skip_steer_left
 BANK BANK_GAME
 CLC
 CSA wheel_angle, #1
 JMP :skip_steer_left
 STC
 SUB wheel_angle, #2
:skip_steer_left
 BANK BANK_MAIN

 ; Turn right
 SNB data8.3
 JMP :skip_steer_right
 BANK BANK_GAME
 STC
 CSB wheel_angle, #254
 JMP :skip_steer_right
 CLC
 ADD wheel_angle, #2

Chapter 9: Case Study: Racing Engine Demo

XGameStation™ Micro Edition User Guide
168

:skip_steer_right
 BANK BANK_MAIN

:skip_steering

 ; **** HANDLE GAS PEDAL ***

 ; Speed up
 SNB data8.0
 JMP :skip_speed_up
 BANK BANK_GAME
 INC_BCD speed_bcd
 BANK BANK_MAIN
:skip_speed_up

 ; Slow down
 SNB data8.1
 JMP :skip_speed_down
 BANK BANK_GAME
 DEC_BCD speed_bcd
 BANK BANK_MAIN
:skip_speed_down

 RETP

End_Handle_Input

This fairly simple subroutine starts by calling Read_Joystick() to put the joystick status in the data8
global. Read_Joystick() uses the fundamental joystick reading techniques discussed in the main
eBook, Design Your Own Video Game Console. The data8 bits corresponding to the left/right and
up/down joystick directions are then read to update the steering wheel and gas pedal, respectively.

While the subroutine is very straightforward, there are a couple notes worth mentioning. First, turns
cannot be made unless the user is moving. Before checking the status of the “steering” bits (left and right
joystick directions), the speed is checked. If it is zero, the steering bits are ignored.

Second, when the user changes the speed with the up and down joystick directions, the speed_bcd
variable is incremented and decremented, not the speed variable itself. speed_bcd is a special BCD
(binary coded decimal) variable that stores the speed in a format that can be easily read and displayed on
the screen using two digits. speed is a separate variable that determines how fast the track itself scrolls.
At each frame, the speed value in speed_bcd is converted from BCD to straight binary and stored in
speed.

9.5 - The BCD Speedometer

As stated above, input from the player first affects the speed_bcd variable, which is then converted to
binary for storage in the real speed variable, simply because it’s easier to increment an existing BCD
value and convert to binary on the SX than it is to convert binary to BCD. Check out the INC_BCD and
DEC_BCD macros in the source code for more information on how the increment and decrement works if
you aren’t already familiar with BCD. Check out Figure 9.9.

Chapter 9: Case Study: Racing Engine Demo

XGameStation™ Micro Edition User Guide
169

Figure 9.9 – Two BCD digits stored in a single byte.

A BCD speed variable is needed so a two-digit speedometer can be easily displayed in the upper-left
corner of the screen. A BCD digit (0-9) is stored in 4 bits, which means the 8-bit speed_bcd variable can
store both digits needed for the speedometer output. The code responsible for drawing the speedometer
then needs only to isolate each 4-bit digit and use it as an index into a table of digit characters. Figure
9.10 illustrates this process.

Chapter 9: Case Study: Racing Engine Demo

XGameStation™ Micro Edition User Guide
170

Figure 9.10 – Converting a BCD counter into a 2-digit display with a 10-digit font table.

This table is stored in program memory using the DW directive much like the lookup tables we’ve seen so
far. The following is the declaration of this table. Only the first three characters are shown to save space:

num_font

num_0
 DW %11111111
 DW %11000011
 DW %11011011
 DW %11000011
 DW %11111111
 DW 0, 0, 0

num_1
 DW %00111000
 DW %00011000
 DW %00011000
 DW %00011000
 DW %11111111
 DW 0, 0, 0

num_2
 DW %11111111
 DW %00000011
 DW %11111111
 DW %11000000

Chapter 9: Case Study: Racing Engine Demo

XGameStation™ Micro Edition User Guide
171

 DW %11111111
 DW 0, 0, 0

If you look closely, you can actually make out the bitmap image of each digit in the ones and zeroes.

9.6 - Expanding the Demo
While the demo produces a nice effect, it’s not particularly entertaining. A considerable amount of work
would have to be done in order to create a true game, but here’s an outline of the three most pressing
omissions as of now:

• Cars
Needless to say, the most blatant missing elements are actual cars to drive. While you might be able
to get away with pretending the player is in a first-person perspective from which his own car is not
visible, there’s still no excuse for not having competitors driving around. The biggest hurdle here is
simply drawing a sprite of any reasonable complexity over the road, considering how dense the logic
already is for drawing the road itself. Remember that in order to introduce new elements, especially
those that overlap with existing ones, a considerable amount of logic must be added.

• A Real Track
Currently, you “design” the track as you drive along it by controlling when it turns and bends. A real
track map would not be difficult to implement; as long as your location within the track (which must be
thought of as one-dimensional) is known, you can determine how close you are from the next turn
and, depending on the distance and the direction of the turn, “lower” the proper curve table into the
track scanlines.

• A Proper Game Interface
Last but most certainly not least, a true game interface will complete the program. Think title screens,
maybe even option screens, and perhaps screens for selecting cars or tracks.

9.7 - Summary
This case study has been a more conceptual, algorithmic discussion rather than an annotated source
code dump. The complete racer engine demo is a fairly complex program and while it’s certainly not
beyond the grasp of most intermediate programmers, it’s a lot of detail to stuff into one small chapter. So,
instead of bogging you down with every conceivable detail, the purpose has been to give you an
informative overview of what you can expect when writing more sophisticated programs, especially those
that approach the level of a full game.

There are still numerous aspects of the demo that were not covered, such as the red and white stripes
that move along the road, the way the mountains scroll, and some other details, but this case study was
not meant to be exhaustive program-wide documentation. Aside from the main eBook, Design Your Own
Video Game Console, of course, the next step in expanding your XGS ME skills would be to take a look
at the racer engine demo source code itself, where all of the remaining details holding these concepts
together come into view.

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
172

Chapter 10: The SX Programming API
Included with the XGameStation Micro Edition’s collection of software, tools and utilities, is the source
code to a library of functions for communicating with the SX20 programmer unit on the board. Using this
library of functions, you can write your own tools for managing the programming, reading, and configuring
processes of the XGS ME.

This section is a brief guide to using this library. While the source code is highly commented and written
to be understandable, the purpose of this section is not to explain how the library was written, but rather
how it can be used in client programs.

NOTE
This chapter assumes at least a basic familiarity with the various aspects of the
XGameStation Micro Edition’s processor, the SX52. If you find any references to the
processor confusing, please refer to the complete SX52 coverage found in the main
eBook, Design Your Own Video Game Console.

10.1 - Programming Architecture
The PC communicates with the XGS ME’s SX52 processor via a secondary slave processor programmer
unit rather than talking to it directly (see Figure 10.1). Like the main processor, the programmer unit is an
SX chip; specifically, a scaled-down model known as the SX20. The programmer unit is programmed with
firmware that implements a basic communication protocol and all of the necessary commands to write to,
read from, and configure the SX52 during the programming process. The source code to this firmware,
written in SX assembly language, is included and discussed briefly in a later section.

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
173

Figure 10.1 – The PC communicates with the XGS ME via the programmer unit.

From a software perspective, the process of programming the XGS ME consists of three levels, described
below and illustrated in Figure 10.2:

• The User-Level Interface (on the PC)

• The SX Programming API (on the PC)

• The Programmer Unit Firmware (on the SX20)

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
174

Figure 10.2 – The three-level software approach to programming the XGS ME.

10.1.1 - The User-Level Interface (Highest Level)

The highest level is the user-level interface, which is how the user interacts with the programmer
ultimately. The XGS Micro Studio IDE (discussed earlier in this guide) provides this interface in the form
of a graphical Windows application that allows users to edit source code and manage the programming
process.

10.1.2 - The SX Programming API (Middle Level)

XGS Micro Studio does not directly communicate with the programmer unit, however, as its primary goal
is simply providing the user-level interface. The SX Programming API is a small set of functions that
provide direct communication with the programmer unit. Separating this level into its own, self-contained
API allows these functions to be easily used in the development of other, alternative tools and interfaces.

10.1.3 - The Programmer Unit Firmware (Lowest Level)

The last level of software involved in programming the SX52 is implemented as firmware running on the
SX20, which communicates with the SX52 over a hardwired connection. Since the SX20 is a fast, self-
contained microprocessor, it can talk to the SX52 in the fastest, most efficient and most reliable way

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
175

possible. This is why an intermediate programmer unit separates the SX52 and the PC; the PC could talk
directly to the SX52, but due to the delicate timing issues required to program an SX chip, and the
relatively inaccurate timing facilities available to PC programs, it’s considerably less reliable.

The SX Programming API and the programmer unit communicate with one another via the PC’s parallel
port.

10.1.4 - The Full Communication Process

With the three levels of communication in mind, it should be clear how the XGS ME is ultimately
programmed. The highest level, the user-level interface (such as XGS Micro Studio) allows the user to
send commands to the middle level, the SX Programming API, which in turn relays the command to the
lowest level, the SX20 programmer unit via the parallel port. The command is then implemented by the
SX20 by communicating directly with the SX52.

10.1.4.1 - Writing Data

When writing data to the SX52 from the PC, it moves from the user-level interface, to the SX
Programming API, then from the SX Programming API to the programmer unit via the parallel port, and
finally from the programmer unit to the SX52 via their hardwired connection on the board.

10.1.4.2 - Reading Data

When reading data from the SX52 to the PC, it moves from the SX52 to the programming unit via their
hardwired connection on the board, from the programmer unit to the SX Programming API via the parallel
port, and finally from the SX Programming API to the user interface.

The remainder of this chapter will focus on the SX Programming API, and how it can be used to develop
new user-level interfaces and tools for programming the XGS ME.

10.2 - Using the Library
The library is implemented in two files: sx_prog_api_01.cpp and sx_prog_api_01.h. Both files can be
found on the XGS ME Software CD with the XGS Micro Studio IDE:

XGS_Micro_Studio_IDE\SX_Prog_API\

Include sx_prog_api_01.h and link sx_prog_api_01.cpp with your project as you would any other
library.

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
176

10.3 - Library Organization
The overall organization of the library and its functionality, which the following section will explain in full, is
illustrated in Figure 10.3. The two main components of the library are the functions themselves, and the
global g_sx_device, a structure designed to reflect the organization of data on the physical SX52
processor.

Figure 10.3 – The overall organization of the SX Programming API library and its relationship with
the programmer unit and SX52 processor.

Since the SX52 consists primarily of its program memory and configuration registers, so too does
g_sx_device.

10.3.1 - Loading Programs into the API

Whenever the library loads an assembled object program from a file, it is loaded into g_sx_device. The
object code is inserted directly into the program memory, and the FUSE and FUSEX register settings are
written to the structure’s corresponding FUSE and FUSEX register fields. See Figure 10.4 for a visual
reference.

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
177

Figure 10.4 – Loading source programs into the SX Programming API library.

10.3.2 - Writing Programs to the Physical SX52

When it comes time to write the program to the SX52 itself, the fields once again correspond directly. The
program memory is written to the real SX52’s program memory, and the FUSE and FUSEX registers are
copied as well. See Figure 10.5 for a visual reference.

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
178

Figure 10.5 – Writing to the SX52 with the SX Programming API library.

10.3.3 - Reading Programs from the Physical SX52

Reading from the SX52 is treated like the reverse of the writing process. Again, the program memory is
read from the SX52 and directly copied into g_sx_device’s program memory. The FUSE and FUSEX
registers are copied from the SX52 into the appropriate register fields as well. Lastly, when reading, the
SX52’s read-only DEVICE register is copied into the DEVICE register field. See Figure 10.6 for a visual
reference.

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
179

Figure 10.6 – Reading from the SX52 with the SX Programming API library.

When all data is written to and read from the same virtualized structure of the processor, it becomes easy
to visualize where data is, and where that data is going, at all times.

10.4 - Library Reference
The following is a reference for the entire SX Programming API library from the perspective of the client
program using it. This reference is broken up into categories like globals, functions, and so on.

10.4.1 - Globals

g_sx_device

A local image of the SX52 device. This structure stores data to be written to the SX52, or data read from
the SX52. After reading almost any aspect of the SX52, for example, the appropriate members of
g_sx_device will contain the information read, organized in the same way that information was found on
the physical SX52.

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
180

10.4.2 - Data Types

SX_WORD

Represents a 12-bit program word on the SX52. Used when passing program word values to and from
the API functions.

SX_CMD

Represents a 32-bit command or response packet passed between the programmer unit and the API
functions. Used for returning response packets to the client program.

10.4.2.1 - The Programmer Unit Response Packet

Most functions that talk to the programmer unit return an SX_CMD value. This is because the response
returned by the programmer unit is a 32-bit packet containing a success/failure flag, an error/status code,
as well as 16 bits of data. Client programs can extract the relevant fields from this returned packet using
the SX_GET_RESPONSE_DATA, SX_GET_RESPONSE_STATUS and SX_CMD_FAILED macros, explained
below.

10.4.3 - The SX_DEVICE Structure

The SX_DEVICE structure is a representation of a physical SX chip’s data. The relevant fields of this
structure are as follows:

SX_WORD fuse, fusex, device;

These fields of course correspond to the SX52’s FUSE, FUSEX and DEVICE registers. After calling
SX_Read_FUSE(), SX_Read_FUSEX(), or SX_Read_DEVICE(), these fields will contain the register
values read. fuse and fusex are also initialized after loading an SXH object file.

SX_WORD program [SX_PROGRAM_SIZE];

This array corresponds to the 4096-word program memory found on the SX52. After reading the SX52
with SX_Read_Program(), this array will contain the image of the device’s program memory.

The remainder of this structure is for internal use and should not be manipulated by the client program.

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
181

10.4.4 - Constants

SX_DEVICE_SX18
SX_DEVICE_SX20
SX_DEVICE_SX28
SX_DEVICE_SX48
SX_DEVICE_SX52

Represent the various SX processors supported by the SX Programming API. Only SX_DEVICE_SX52 is
needed for XGS ME development.

SX_PROG_BUFFER_SIZE

Size, in 12-bit program words, of the programmer unit’s onboard data buffer.

SX_PROG_BUFFER_BYTE_SIZE

Size, in bytes, of the programmer unit’s onboard data buffer. Since two consecutive bytes are used to
store each 12-bit program word, this is always twice the size of SX_PROG_BUFFER_SIZE.

STATUS_SUCCESS
STATUS_ERROR
STATUS_TIMEOUT

Status codes that report the result of a given command. STATUS_SUCCESS means the command was
successful, STATUS_ERROR means that the command failed for some reason, and STATUS_TIMEOUT
means the API lost contact with the programmer unit.

10.4.5 - Functions

bool SX_Init (int device, char *config_file);

Called at the start of a program to initialize the SX Programming API. Use the constant
SX_DEVICE_SX52 for the device parameter, and pass an empty string (not a null string) as the
config_file parameter. Call this function before calling any other API function. A false return value
most likely means that the library could not establish a connection with the I/O ports, which is usually the
result of another program being open at the same time that uses the same port abstraction layer. Close
all programs that access the parallel port and try again.

bool SX_Shut_Down ();

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
182

Called at the end of a program to shut down the SX Programming API.

void SX_Set_Device (int device);

Changes the device the API is interfacing with to device. Since XGS ME development will always be
based around the SX52, this function does not need to be explicitly called by the client program. See the
Constants section above for a list of device constants for use with this function.

SX_CMD SX_Init_ISP ();

Initializes the processor’s ISP (in-system programming) mode, allowing it to be programmed, read and
configured by the programmer unit. This function must be called successfully before any commands are
sent to the programmer unit.

SX_CMD SX_Shut_Down_ISP ();

Shuts down the ISP mode set by SX_Init_ISP(). Call this before the end of a program (and before
calling SX_Shut_Down()).

void SX_Erase_Buffer ();

Clears the API’s local program memory buffer. This function does not have any affect on the programmer
unit or the SX52 processor. This function does not generally need to be called by the client program. Not
to be confused with SX_Erase_Device().

void SX_Map_Code_Runs ();

Creates a map of the currently loaded programs code for use when writing the program to the SX52. This
function is only necessary when not loading program code with the SX_Load_SXH_File() function
(which calls it automatically).

bool SX_Load_SXH_File (char *filename);

Loads the SXH file (assembled SX52 object code) specified by filename into the program memory
buffer. Also loads the program’s desired FUSE and FUSEX register settings.

bool SX_Save_SXH_File (char *filename);

Saves the current program memory buffer to the SXH file specified by filename, for use with this API or
any other SXH-compatible program (such as XGS Micro Studio and SX-Key). Also saves the current
FUSE and FUSEX settings.

bool SX_Read_Program (int *progress, SX_CMD *result);

Reads a segment of the SX52’s program memory into the local buffer. Returns the status by reference in
the result parameter, and the amount of code read so far (as a percentage) in progress. The Boolean

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
183

return value is true when the program has been fully read. This function is designed to be called
iteratively to allow a real-time user interface to update a progress display and to allow the process to be
cancelled before completion.

bool SX_Write_Program (int *progress, SX_CMD *result);

Writes a segment of the local program memory buffer to the SX52’s program memory. Returns the result
status by reference in the result parameter, and the amount of code written so far (as a percentage) in
progress. The Boolean return value is true when the program has been fully written. This function is
designed to be called iteratively to allow a real-time user interface to update a progress display and to
allow the process to be cancelled before completion.

SX_CMD SX_Erase_Device ();

Erases the SX52’s program memory. Does not affect the local program memory buffer. Not to be
confused with SX_Erase_Buffer().

SX_CMD SX_Inc_Mem_Ptr (int count);

Increments the SX52’s internal memory pointer by count. Not needed by client programs for most
purposes.

SX_CMD SX_Read ();

Reads a single program word from the SX52 at the location of its internal memory pointer, then
increments that pointer. Only necessary for specialized purposes; to read the entire program memory,
use SX_Read_Program().

SX_CMD SX_Write (SX_WORD x, bool verify);

Writes a single program word (x) to the SX52 at the location of its internal memory pointer, then
increments that pointer. Set verify to true to verify that the value was written correctly (generally not
necessary). Only necessary for specialized purposes; to write an entire program to the SX52, use
SX_Write_Program().

SX_CMD SX_Write_FUSE ();

Writes the contents of the API’s local FUSE register buffer to the SX52 at the location of its internal
memory pointer, then increments that pointer. Since the FUSE register can only be written after this
pointer is reset, call this function before any other write function.

SX_CMD SX_Read_FUSEX ();

Reads the FUSEX register from the SX52 into the API’s local FUSEX register buffer.

SX_CMD SX_Write_FUSEX (bool verify);

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
184

Writes the FUSEX register to the SX52 from the API’s local FUSEX register buffer. Set verify to true to
verify that the register was written correctly (generally not necessary).

SX_CMD SX_Read_DEVICE ();

Reads the DEVICE word from the SX52 into the API’s local DEVICE register buffer.

SX_CMD SX_Write_Buffer (SX_WORD data, int addr);

Writes a program word (data) to the programmer unit’s intermediate buffer at addr, allowing chunks of
program memory to be built up before being written to the SX52’s flash memory. Not generally needed by
client programs.

SX_CMD SX_Read_Buffer (int addr);

Reads the program word from the programmer unit’s intermediate buffer at addr. This function can be
used to quickly read the SX52’s program memory by first buffering it in the intermediate buffer by calling
SX_Stream_Buffer_In(). Not generally needed by client programs.

SX_CMD SX_Stream_Buffer_Out (int size);

Streams the contents of the programmer unit’s intermediate buffer to the SX52’s flash memory. By first
filling this buffer with SX_Write_Buffer(), chunks of program memory can be written to the SX52
faster than they could be word-by-word using SX_Write(). size is the number of 12-bit program words
to stream out of the buffer; use SX_PROG_BUFFER_SIZE to stream the whole buffer. Generally not
needed by client programs.

SX_CMD SX_Stream_Buffer_In (int size);

Streams the contents of the SX52’s flash memory to the programmer unit’s intermediate buffer. This
buffer can then be read quickly with SX_Read_Buffer(), allowing a chunk of the SX52’s program
memory to be read faster than it could be word-by-word using SX_Read(). size is the number of 12-bit
program words to stream into the buffer; use SX_PROG_BUFFER_SIZE to stream the whole buffer.
Generally not needed by client programs.

10.4.6 - Macros

SX_GET_RESPONSE_DATA (r)

Returns the data field of response packet r.

SX_GET_RESPONSE_STATUS (r)

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
185

Returns the status code field of response packet r.

SX_CMD_FAILED (r)

Returns true if response packet r reports a failed command, false otherwise.

10.5 - Complete Library Demos
The following source code examples use the SX Programming API to program, configure, and read the
XGS ME’s SX52 processor. This illustrates the basis for writing alternative IDE’s, programming utilities,
and the like.

The source to this demo is available on the XGS ME Software CD along with the rest of the SX
Programming API:

XGS_Micro_Studio\SX_Prog_API\sx_prog_write_demo_01.cpp

10.5.1 - Programming the SX52

The following demo programs the SX52 with the racing demo. In addition to writing the program memory
itself, the FUSE and FUSEX registers must be written in order to fully write a functional program onto the
system.

/*
 SX Programming API Demo

 by Alex Varanese
 10.7.2003
*/

#include "sx_prog_api_01.h"

main ()
{
 // **** INITIALIZE **

 // First, initialize the library itself
 SX_Init (SX_DEVICE_SX52, "");

 // Now, attempt to initialize the programming mode
 if (SX_CMD_FAILED (SX_Init_ISP ()))
 {
 printf ("\nCould not initialize ISP mode.\n");
 return (0);
 }
 else
 {
 printf ("\nISP mode initialized.");
 } // End if

 // **** PROGRAM/READ/CONFIGURE **

 // Load the racing demo as an example

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
186

 if (SX_Load_SXH_File ("racer.sxh") != true)
 {
 printf ("\nCould not load load source file.\n");
 return (0);
 }
 else
 {
 printf ("\nSource file loaded.");
 } // End if

 // Erase the device of any current data
 if (SX_CMD_FAILED (SX_Erase_Device ()) == true)
 {
 printf ("\nCould not erase device.\n");
 return (0);
 }
 else
 {
 printf ("\nDevice erased.");
 } // End if

 // Write the FUSE register
 if (SX_CMD_FAILED (SX_Write_FUSE ()) == true)
 {
 printf ("\nCould not write FUSE register.\n");
 return (0);
 }
 else
 {
 printf ("\nFUSE register written.");
 } // End if

 // Write the program

 printf ("\nWriting program");

 bool is_done = false;
 while (is_done == false)
 {
 // Progress and result
 int p;
 SX_CMD r;

 // Write the next chunk of the program
 is_done = SX_Write_Program (true, &p, &r);

 // Write the next chunk of the program
 if (SX_CMD_FAILED (r))
 {
 printf ("\nCould not write to program memory.\n");
 return (0);
 } // End if

 printf (".", p);
 } // End for

 printf ("\nDevice programmed.");

 // Write the FUSEX register
 if (SX_CMD_FAILED (SX_Write_FUSEX ()) == true)
 {
 printf ("\nCould not write FUSEX register.\n");
 return (0);
 }
 else
 {
 printf ("\nFUSEX register written.");

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
187

 } // End if

 // **** SHUT DOWN ***

 // Shut down the ISP mode
 if (SX_CMD_FAILED (SX_Shut_Down_ISP ()))
 {
 printf ("\nCould not shut down ISP mode.\n");
 return (0);
 }
 else
 {
 printf ("\nISP mode shut down.");
 } // End if

 // Finally, shut the library down
 SX_Shut_Down ();

 return (0);
} // End main ()

When the program is run, provided the source file is present and the XGS ME is turned on and properly
connected, the following output should appear:

SX PROGRAMMER DEMO

ISP mode initialized.
Object code file loaded.
Device erased.
FUSE register written.
Writing program...................................
...............................
Device programmed.
FUSEX register written.
ISP mode shut down.

As demonstrated here, the order in which a program is written to the SX52 is as follows:

• Erase device

• Write FUSE register

• Write program memory

• Write FUSEX register

After reading the function reference, the rest of the program should be self-explanatory. Each function is
called to perform its action in sequence (initialization, loading source, programming, etc.) and branches
off into either a success or failure block to track errors along the way. Throughout, the SX_CMD_FAILED
macro is used to quickly check for errors.

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
188

10.5.2 - Reading the SX52

This demo performs the opposite function and reads the SX52. Along with the program memory, the
FUSE and FUSEX registers are written as well. Lastly, and unlike in the previous example, the read-only
DEVICE register is read.

To save space, the initialization and shutdown code has been omitted from the source listing.

The full source to this demo is available on the XGS ME Software CD:

XGS_Micro_Studio\SX_Prog_API\sx_prog_read_demo_01.cpp

printf ("\n");
printf ("\nREADING CHIP...");
printf ("\n");

// Read the DEVICE register
if (SX_CMD_FAILED (SX_Read_DEVICE ()) == true)
{
 printf ("\nCould not read DEVICE register.\n");
 return (0);
}
else
{
 printf ("\nDEVICE register read.");
} // End if

// Read the FUSE register
if (SX_CMD_FAILED (SX_Read_FUSE ()) == true)
{
 printf ("\nCould not read FUSE register.\n");
 return (0);
}
else
{
 printf ("\nFUSE register read.");
} // End if

printf ("\nReading program");

bool is_done = false;
while (is_done == false)
{
 // Progress and result
 int p;
 SX_CMD r;

 // Write the next chunk of the program
 is_done = SX_Read_Program (&p, &r);

 // Write the next chunk of the program
 if (SX_CMD_FAILED (r))
 {
 printf ("\nCould not read from program memory.\n");
 return (0);
 } // End if

 printf (".", p);
} // End for

printf ("\nDevice read.");

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
189

// Read the FUSEX register
if (SX_CMD_FAILED (SX_Read_FUSEX ()) == true)
{
 printf ("\nCould not read FUSEX register.\n");
 return (0);
}
else
{
 printf ("\nFUSEX register read.");
} // End if

// Print out registers
printf ("\n");
printf ("\nFUSE: $%03X", g_sx_device.fuse);
printf ("\nFUSEX: $%03X", g_sx_device.fusex);
printf ("\nDEVICE: $%03X", g_sx_device.device);
printf ("\n");

// Save the read file
if (SX_Save_SXH_File ("program.sxh") != true)
{
 printf ("\nCould not save object code file.\n");
 return (0);
}
else
{
 printf ("\nObject code file saved.");
} // End if

When the program is run, provided the XGS ME is turned on and properly connected, output similar to the
following should appear:

SX PROGRAMMER DEMO

ISP mode initialized.

READING CHIP...

DEVICE register read.
FUSE register read.
Reading program...................................
..
..
Device read.
FUSEX register read.

FUSE: $FAA
FUSEX: $7BF
DEVICE: $002

Object code file saved.
ISP mode shut down.

The FUSE and FUSEX register printouts will of course change depending on the exact values set on your
particular SX52. The DEVICE register will remain the same across all XGS ME systems, however.

Chapter 10: The SX Programming API

XGameStation™ Micro Edition User Guide
190

10.6 - The Programmer Unit Firmware Source Code
The source to the programmer unit firmware is written in SX assembly language and is well-commented.
While it is beyond the scope of this user guide to explain how this firmware was written, the code is pretty
much self-explanatory and a programmer sufficiently comfortable with SX assembly should be able to
figure it out without much trouble.

The firmware source code can be found on the XGS ME Software CD along with the XGS Micro Studio
IDE:

XGS_Micro_Studio\SX_Prog_Firmware\sx_prog_firmware_01.SRC

Chapter 11: Reprogramming the Programmer Unit Firmware

XGameStation™ Micro Edition User Guide
191

Chapter 11: Reprogramming the Programmer Unit Firmware
In Chapter 10, we saw how the SX20 programmer unit is used to program and read the SX52 processor.
Perhaps the most important part of the XGS ME’s programming functions is the programmer unit’s
firmware, which implements the communication protocol as well as all of the commands themselves for
manipulating the SX52’s program memory and configuration registers. In order to program the XGS ME
with the built-in programmer, this firmware must be present.

However, there may be times when updating or changing this firmware is useful. For example, if an
updated or alternate version of the programmer firmware should become available, you would need some
way to get it onto your SX20.

Even more interesting is the possibility of using the SX20 not as a programming unit, but as a slave
processor that a program running on the SX52 can utilize to perform tasks in parallel with its own
execution. There is a two-wire interface between the SX52 and SX20 available specifically for this
possibility, as shown in Figure 11.1. The SX20’s RB1 (pin 8) connects to the SX52’s RA7 (pin 2). The
SX20’s RB2 (pin 9) also connects to the SX52’s RB7 (pin 19). If you are using the SX-Key programmer
instead of the built-in XGS ME programmer, the SX20 is not needed in its role as the onboard
programmer unit and can be reprogrammed for your own purposes.

Figure 11.1 – The communication lines between the SX52 and SX20.

11.1 - Reprogramming the SX20
The SX20 is located in the lower-left corner of the board, as seen in Figure 11.2. You will notice that near
the corner of the board, just above the joystick port, a second SX-Key port is hidden. This port works just
like the SX-Key port at the back of the board, except it programs the SX20 instead of the SX52. This of
course means that you’ll need an SX-Key in order to reprogram it.

Chapter 11: Reprogramming the Programmer Unit Firmware

XGameStation™ Micro Edition User Guide
192

Figure 11.2 – The SX20 and its hidden SX-Key port.

One thing that may cause confusion is the SYSMODE switch used to control the SX52. This switch has
absolutely no effect on your ability to program the SX20 via its own SX-Key port. The SX52 needs a
three-way mode switch because it can be programmed by both the built-in programmer unit, as well as
the SX-Key, and has a separate mode in which it runs using its own on-board oscillator. However, the
SX20’s programming interface is totally unrelated and does not need any special settings. In any mode,
at any time, the SX20 can be reprogrammed.

NOTE Like anything else, always reset the system after reprogramming the SX20 to ensure that
everything is running off the same fresh reset.

Another important note is that the source code to the programmer unit firmware is included, and can be
used to restore the programmer unit’s functionality should it be intentionally changed or accidentally
corrupted at any time. You can find the SX20 programmer unit source code here, along with the XGS
Micro Studio IDE:

XGS_Micro_Studio\SX_Prog_Firmware\sx_prog_firmware_01.SRC

Chapter 11: Reprogramming the Programmer Unit Firmware

XGameStation™ Micro Edition User Guide
193

11.2 - An Example
The following is a step-by-step example of reprogramming and restoring the SX20 programmer unit.

NOTE
Before attempting either of the following tutorials, please take all of the usual steps to
ensure that the system is properly powered-up and turned on. If you haven’t already,
make sure to read the Quick Start guides in Chapter 2 and the troubleshooting
information in Chapter 5.

11.2.1 - Reprogramming the Firmware

11.2.1.1 - Step 1 – Connecting the SX-Key to the SX20 Programming Port

Connect the SX-Key to the SX-Key port found near the SX20 as shown in Figure 11.3. Remember, the
SYSMODE switch has no bearing on the SX20 and can be on any setting.

Figure 11.3 – Connecting the SX-Key to the SX20 via its programming port.

11.2.1.2 - Step 2 – Load the New SX20 Firmware Program

Launch the SX-Key IDE and load the source code to the new firmware you’d like to program the SX20
with.

For the purpose of this example, load the program sx20_led.src from the following directory:

Chapter 11: Reprogramming the Programmer Unit Firmware

XGameStation™ Micro Edition User Guide
194

XGS_Micro_Studio\SX_Prog_Firmware\

11.2.1.3 - Step 3 – Program the SX20

From the Run menu, select Run or press Ctrl+R. The progress window should appear and the code
should be written to the SX20. Once the programming is complete, make sure to reset the system.

You should now see an animated LED pattern. This is your new SX20 program! Don’t panic, however,
because the next tutorial will explain how to restore the original programmer unit firmware.

11.2.2 - Restoring the Programmer Unit Firmware

11.2.2.1 - Step 1 – Load the Programmer Unit Firmware

With SX-Key still open, load the file sx_prog_firmware_01.src from the following location:

XGS_Micro_Studio\SX_Prog_Firmware\

From the Run menu, select Run or press Ctrl+R. The progress window should appear and the code
should be written to the SX20. Once the programming is complete, make sure to reset the system.

TIP
Upon reset, you should notice the same animated LED pattern that originally ran before
reprogramming the SX20. This is part of the programmer unit firmware and is included to
let the user of the system know that the SX20’s program memory is intact.

11.2.2.2 - Step 2 – Test the Programmer Unit

Launch XGS Micro Studio and make sure the programmer unit is once again functioning normally by
running any of the included graphical demos. Remember that when programming with the built-in
programmer, the SYSMODE switch must be set to PGM mode while programming, and then set to RUN
mode after programming so the program can execute. And of course, don’t forget to reset the system
after switching back to RUN mode.

The program you selected should now be running, meaning you have successfully restored the SX20
programmer unit.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
195

Chapter 12: Advanced Graphics: Tile Graphics Engine

12.1 - Brief Overview of XGS ME Programming
Graphics on the XGameStation Micro Edition is a complex and fascinating subject. It’s rare that a game
or graphics programmer these days has any need to generate or even understand a TV signal, but on the
XGS ME, it’s the only way to get anything on the screen. Furthermore, the system’s intriguing mix of very
small but fast on-chip memory, very large but slow off-chip memory, and ultra fast processing power
provide an interesting set of constraints. On the one hand, a bloated, bitmap heavy display is going to be
a formidable challenge, while procedurally generated, on-the-fly graphics techniques feel right at home.

12.2 - Different Approaches to Game Graphics
Throughout the years of game programming evolution, developments in both hardware and software
have produced a multitude of different ways to put something on the screen. As is always the case, the
problem is a matter of balancing graphical detail and color depth with processing speed and memory
consumption. The following are a few commonly-used approaches to game graphics, both new and old.

12.2.1 - Vector Graphics

Since the earliest video games predated the common use of the raster displays we associate with
computers today, game developers didn’t have concepts like “pixels” and “sprites” in their vocabulary.
Instead, their graphics were displayed using streaks of illuminated phosphor traced out by an electron
gun controlled by their code. Rather than design graphics with colors, shapes and textures, imagery was
composed entirely of a monochrome network of interconnected lines, or vectors. Perhaps the most
famous example of a true vector game is Spacewar!, written in 1962 at MIT on the PDP-1. Check out
Figure 12.1 for an example of another famous vector game, Atari’s Battlezone.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
196

Figure 12.1 – A vector-based game consists of bright lines on a dark background, rather than
colored pixels.

What vector graphics lack in detail and color, they make up for in flexibility. Since an object rendered with
vectors can be thought of as nothing more than a set of coordinates, it can be rotated, scaled, distorted
and warped easily and will always appear equally crisp. Contrast this with pixel-based graphics, which
can often degrade heavily as such transformations are applied.

Vector graphics are a possibility on the XGameStation Micro Edition, but pose a reasonable challenge.
Firstly, the limited on-chip RAM of the system limits the complexity of your game objects, since only a
modest number of multi-byte vectors can be stored economically. Second, transforming and manipulating
vectors on a system with no native support for multiplication, division or 16-bit arithmetic (much less
floating point arithmetic) means numerous math subroutines must be written. Lastly, and perhaps most
importantly, a TV-driving video kernel that can determine if any given pixel lies within any vector’s path
within its allotted amount of clocks is non-trivial.

Regardless, vector displays have been successfully written for the XGS ME. Especially when it comes to
nostalgia value, vectors are still an interesting consideration for game graphics.

12.2.2 - Framebuffer/Pixel Graphics

Framebuffer/pixel-based graphics are most commonly seen throughout the history of game development
on the PC. PCs, usually far more expensive than video game systems, had larger, simpler memory

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
197

architectures that easily supported the storage of at least one full-screen buffer of pixel data. These
buffers, called framebuffers, stored exactly what their names suggest—one complete frame of video
data ready to be displayed on the output device (monitor). In other words, it was a memory based copy of
what the user saw on the screen that was easily modifiable.

The beauty of pixel-based graphics is that anything is possible. Virtually everything you see around you
can be represented on a 2D pixel display provided reasonable color depth and resolution is available.
This means that game objects of all kinds as well as complex effects and multi-layered animation can be
done. Think of a framebuffer as a blank canvas onto which anything can be painted. Once access to a
framebuffer is provided, all that’s really needed is enough memory to store bitmapped images of the
game’s graphics, as well as sufficient processing speed to copy and possibly transform those graphics to
the framebuffer for display.

While a pixel-based framebuffer is ultimately the most powerful and flexible way to display game graphics,
it suffers from two major drawbacks—memory and speed requirements.

12.2.2.1 - Framebuffer Memory Issues

Framebuffers are quite large by nature. To calculate the amount of memory needed to store a given
screen, use the following formula:

X_Resolution * Y_Resolution * (Color_Bit_Depth / 8)

In other words, a display of 320x240 pixels wherein each pixel color is represented by one 8-bit byte,
would require 320 * 240 = 76,800 bytes! On a system with 256 bytes of on-chip RAM (not counting the
global registers), that’s asking a lot. Even at an ultra-chunky resolution of 80x60 pixels (which would
barely be usable anyway), that’s still 4,800 bytes—4,544 too many.

Of course, the off-chip SRAM can store such a buffer. But then speed becomes the problem. How exactly
does one disperse the loading of 76,800 bytes of SRAM over the video kernel’s generation of the TV
signal? This brings us to the next problem associated with framebuffer graphics.

12.2.2.2 - Framebuffer Speed Issues

Even if you have the memory for a framebuffer, you still have to get your game’s graphics into that
memory somehow. For many games, this may even entail drawing an entire, full-screen background
before drawing the foreground objects, which basically means each individual pixel will be written to once,
and possibly even multiple times. If a system’s memory access is anything less than lightning fast, this
may render framebuffer graphics too slow to be feasible (at least full-screen).

While the XGS ME is a very fast system with ultra-fast access to its on-chip RAM, the external 128K
SRAM is only accessible via a limited I/O pin interface that brings with it significant overhead. Writing to a
random location in SRAM requires shifting out a 12-bit page address that can mean around 100-200

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
198

clocks per byte read or written. Naturally, this is not sufficient in the event that 76,800 pixels need to be
copied.

12.2.3 - Tile/Character-Based Graphics

Since the video game consoles of the 80’s and early 90’s couldn’t affordably incorporate enough memory
and bandwidth into their designs to provide programmers with usable access to a full-screen
framebuffers, a different approach was taken. Instead of giving programs direct access to an array of
pixels, they would describe graphics in terms of higher-level constructions like backgrounds, sprites and
text. Graphics were drawn in small, square chunks called tiles or characters, then organized like puzzle
pieces on the screen to create a final image. Programmers simply focused on the placement and
contents of these tiny square image chunks, while specialized, high-speed hardware was responsible for
translating this collage of tiles into a final full-screen image.

If, for example, a system’s tiles were 16x16 pixels, and the resolution of the screen itself was 256x192
pixels, it would take only (256 / 16) * (192 / 16) = 16 * 12 = 192 bytes to cover the entire screen in tile-
based graphics. The only real constraint placed on developers is that the total number of unique tile
bitmaps available dictates the ultimate level of detail possible on the screen. For example, if the system
only supported 64 unique tiles, certain tiles would have to be in more than one place on-screen in order to
fill all 192 tile locations. Fortunately, most games feature a lot of “graphical redundancy”, such as constant
patterns and colors used in backgrounds, as well as a single character design being used for multiple on-
screen characters.

For an example of how good tile graphics can look, despite being confined to a grid, check out the
screenshot in Figure 12.2 from Seiken Densetsu 3 (Secret of Mana 3), a Japanese-only action RPG for
the Super Famicom (Super NES).

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
199

Figure 12.2 – A screenshot of a well-illustrated tile-based game.

12.2.4 - Summary

All methods of displaying graphics are in some way a trade-off between quality and feasibility. Naturally,
the choice for a given game’s approach to graphics has a lot less to do with personal preference and a lot
more to do with the limitations of the hardware.

12.3 - Tile Graphics on the XGS ME
All things considered, tile graphics offer the best combination of quality and feasibility on the
XGameStation Micro Edition. The XGS Tile Graphics Engine balances the use of on-chip RAM, external
SRAM and program memory to minimize overhead for the game that uses it, and allows the game logic to
focus entirely on the tile buffer (which determines which tiles appear where onscreen) rather than the
video signal itself. In fact, it’s even written in such a way that game logic can be written without any regard
for timing issues and the rest of the V-sync. We’ll learn more about this in a moment.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
200

NOTE
This chapter refers to version 1.2 of the Tile Graphics Engine. Future versions will
remain as compatible as possible, but differences between your version of the software
and version 1.2 may exist. Be sure to check out the included ReadMe.txt file for more
information.

The Tile Graphics Engine is not perfect, however, and suffers from a few limitations:

• No more than 64 unique tiles can exist in a given game. This limitation is usually not a problem, but
worth keeping in mind.

• Objects must move along tile boundaries. Since tiles are 8x8 pixels, this can result in jerky movement
for very slow or small movement. In most cases the effect is acceptable, however.

• Tiles cannot overlap. All tiles are drawn on tile boundaries, which means there’s no way to shift a
given object less than 8 pixels over another object, since 8 pixels is the minimum increment of
movement allowed by the engine.

• Unless modified, the tile engine can only display its screen-sized tile map. In other words, unless you
write your own changes into the tile engine’s video kernel, only the tile map will be seen on the
screen. This means if you wrote some sort of graphical effect of your own, it won’t be able to share
the screen with tile graphics.

Of course, the Tile Graphics Engine is ultimately a useful tool for developing games. Let's see why:

• Complex, colorful graphics with a console-style look can be implemented easily.

• The engine includes a complete video kernel, allowing you to focus entirely on game logic and
graphics while the engine handles the actual generation of a TV signal for you.

• A level of full-screen graphical detail can be attained at a fraction of the memory and processing time
it might take using more “brute-force” methods.

12.4 - Using the XGS ME Tile Graphics Engine
The XGS ME Tile Graphics Engine is provided in the form of a “skeleton” source file into which you write
your game. Games written into the source code are referred to as client programs. This section explains
how the engine is used by a game.

The tile graphics engine can be found in the Tile_Engine folder, and the skeleton source file can be
found here:

Tile_Engine\ xgs_me_tile_gfx_engine_1_2.SRC

To understand and use the tile engine, you must understand the following concepts:

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
201

• Source Code Structure & Organization

• Framebuffers

• Tiles & Bitmaps

• Maps & Tile Attribute Tables

• Designing a Game Loop

12.4.1 - Source Code Structure & Organization

Because the Tile Graphics Engine is provided in the form of source code, you must understand the layout
of this code in order to write your game into it.

The Tile Graphics Engine is implemented entirely within a single source file. The relevant sections of the
source file are as follows:

1. Constants
Constants used by the engine, as well as a few of general use that you may find handy (such as
TRUE and FALSE, cardinal directions, etc.).

2. Variables
Allocates a few banks of registers for internal use by the tile engine. Also defines numerous
temporary registers that can be used by client programs.

3. Macros
Defines both macros for internal use as well as “wrapper” macros that make it easier to call engine
functions.

4. Main
The video kernel and main execution loop for Tile Graphics Engine programs. This section of the
source code is responsible for generating a video signal based on the tile map and

5. Subroutines
Numerous subroutines for controlling the Tile Graphics Engine, as well as two very important ones—
Game_Init() and Game_Update(), which we will discuss shortly.

12.4.2 - Writing Client Programs

Writing client programs that use the Tile Graphics Engine is very straightforward. Each aspect of a
complete program is already outlined within the source code as needed for the engine itself, leaving you
to simply “fill in” these areas with your own code. For example, as you define constants for your game,
you can add them under the Constants heading already present in the file. The same goes for your own
banks, variables and macros.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
202

Defining your own constants, variables and macros is as easy as adding them under the appropriate
heading within the source file. But where does the game code itself go? In the case of most of your game-
specific subroutines, the answer, of course, is that they go anywhere you want. However, in the case of
two very important subroutines, a place has already been reserved.

12.4.2.1 - Initializing the Client Program

Upon reset, both the client program and Tile Graphics Engine need to be initialized. The Tile Graphics
Engine already runs its own initialization code, so all that’s left is for your game to initialize itself as well.
The Game_Init() subroutine is provided specifically for this task.

Inside the subroutine you may find some demo code already there, spelling out “XGS TILE GFX” on a
colored background. Go ahead and delete this, making sure not to delete the RETP instruction at the end
of the subroutine.

This subroutine is automatically called when the Tile Graphics Engine initializes, so it’s the place to put all
of your startup code for initializing variables, setting initial game states, and so on.

12.4.2.2 - Implementing Client Program Game Logic

Due to the nature of the XGS video kernel, XGS games are written around a single main loop that
executes throughout the lifespan of the program, responsible for both generating the video signal and
updating game logic on a per-frame basis.

Since the Tile Graphics Engine is already handling the video signal, all your game needs to do is take
care of its own logic. This is accomplished by filling in the Game_Init() subroutine with whatever your
game needs to do in a per-frame basis to keep itself updated.

Game_Update() is called during the V-sync, which is a period of approximately 60,000 clock cycles
during which the video kernel is letting the TV catch up so it will be ready for the next frame. This period
gives client programs ample time to perform their own game logic and keep the game in-sync with the
screen. Figure 12.3 visualizes this.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
203

Figure 12.3 – Updating game logic in between each frame.

Normally, code executing during the V-sync must keep track of how many clock cycles it takes to execute
so that it can “pad” the rest of the sync with a delay that occupies the remainder of those approximately
60,000 clocks. This is because the V-sync period must take up that exact period of time, whether the
code executing within it needs it all or not. So, if your game update code is finished within 10,000 clocks,
you’ll need to sit in an empty loop for around 50,000 additional clocks to ensure the TV signal is not
corrupted. Equally important, however, is that the game update code does not exceed the V-sync period
either.

Fortunately for client programs, the Tile Graphics Engine keeps track of the execution of
Game_Update() using the SX52’s RTCC (Real-Time Clock Counter). After the update function returns,
the engine determines how much time is left and handles the delay automatically. This means that client
programs don’t have to worry about timing at all while processing game logic, which is a huge relief! The
only thing your game must still ensure, of course, is that it does not exceed the allotted period. As long as
it remains under the limit, the Tile Graphics Engine will handle the rest.

12.4.3 - Framebuffers

At each iteration of the main loop, the Tile Graphics Engine redraws the screen using a framebuffer
stored in the external SRAM. As described earlier, a framebuffer is a complete representation of the
screen that is used directly to generate the video signal. In the case of the Tile Graphics Engine, there is
no direct pixel access, so the framebuffer is composed of an array of tiles and their associated attributes.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
204

The resolution of the Tile Graphics Engine screen is 128x192 pixels and the tiles themselves are 8x8
pixels. This means the screen is composed of a map of 16x24 tiles. Each tile is represented with three
fields of data:

• Bitmap Index
Tells the engine which 8x8 graphic is to be drawn in this tile. Tile graphics are stored in program
memory, and will be discussed in the next section.

• Foreground Color
The 8-bit foreground color of the tile.

• Background Color
The 8-bit background color of the tile.

The main framebuffer, referred to as the visible buffer, is automatically created at page 0 (the lowest
address) of the SRAM. Since each tile requires 3 bytes, each row of tiles requires 16 * 3 = 48 bytes (3
SRAM pages). Each row is actually stored in 64 bytes, however, with an extra page used simply to pad
the width of each row to a power of two for faster addressing. Multiply the row width by 24, the number of
rows of tiles drawn down the screen, and you need 64 * 24 = 1536 bytes (96 pages) of SRAM to store
one Tile Graphics Engine framebuffer.

12.4.3.1 - Multiple Framebuffers

The default framebuffer is directly copied to the video signal at every frame, which means you’ve only got
one copy of your game’s background at any given time. This becomes a problem if you draw foreground
objects over this background, since they will leave a trail of foreground tiles as they move around the
screen.

To solve this problem, the Tile Graphics Engine allows multiple framebuffers to be created and copied to
and from one another at any time. This way, the game background can be safely copied to a second
framebuffer and recopied every frame to clear the previous foreground objects and allow those objects in
their new positions to be redrawn without leaving a trail.

Use the M_COPY_SCREEN macro to copy a framebuffer from one 12-bit page address to another.

M_COPY_SCREEN source_hi, source_lo, dest_hi, dest_lo

The source_hi:source_lo arguments form a 12-bit page address of the source framebuffer, and
dest_hi:dest_lo form a 12-bit page address to the destination framebuffer. The framebuffer is then
directly copied from the source to the destination. This operation has been optimized to be suitable for
refreshing a background on a per-frame basis, but generally should not be called more than once inside
Game_Update(), as it begins to encroach too heavily on your remaining time.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
205

12.4.4 - Tiles & Bitmaps

Tiles are of course the heart of the Tile Graphics Engine, and are the smallest graphical unit that can be
manipulated. Each tile is represented by an 8x8 matrix of 1-bit pixels. A value of 1 represents the
foreground color, while 0 represents the background color. Tiles are stored directly in program memory to
ensure the fastest possible rasterization. To further speed up the decoding of the tile bitmaps, each row of
8 pixels is given its own program word, even though program words are 12 bits wide and can technically
store 1.5 tile rows. Because of this, 8 program words are required to represent one tile.

As an example of entering or editing tile graphics, take a look at the following code:

DW %00011000 ; Coin
DW %00111100
DW %01100110
DW %01101110
DW %01101110
DW %01101110
DW %00111100
DW %00011000

This code fragment, taken from the XGS Bros. demo, represents a coin. Notice that the “foreground” area
of the tile, the coin itself, is “drawn” as a solid circular formation of 1’s. The “background”, representing the
empty space around the coin, is zeroed out. See Figure 12.4 for an example of how tile bitmaps relate to
different foreground and background colors in the final image.

Figure 12.4 - How tile bitmaps relate to different foreground and background colors in the final
image.

The Tile Graphics Engine supports up to 64 unique tile bitmaps starting at the tiles label (defined by
default at $F00, leaving room for exactly 64 tiles reaching the end of the SX52’s program memory).

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
206

TIP
Even though the engine supports up to 64 tile bitmaps, you don’t need to use them all.
Any space left unused after your last tile definition is free to use for your own purposes. If
you’re running low on program memory, don’t hesitate to stuff some extra code in there!

Tiles can be directly drawn at any time to the visible buffer, after which they will immediately appear on
the screen. There are numerous ways to a add tiles to the visible buffer, using the following macros:

M_SET_TILE x, y, tile_index, fg_color, bg_color

Sets a tile with the specified bitmap, foreground color and background color at the specified X, Y location.
Automatically clips to the framebuffer boundaries so you can safely draw tiles offscreen when necessary
without overwriting other areas of memory.

M_SET_TILE_FG x, y, tile_index, fg_color

Works almost exactly like M_SET_TILE, but does not change the background color of the existing tile at
the specified X, Y location. Use this macro to draw foreground objects that should not disturb the
background. By leaving the background color intact, the appearance of sprite transparency is simulated to
an acceptable degree in most cases. Also clips to the framebuffer automatically.

M_GET_TILE_INDEX x, y

This function does not draw a tile, but rather returns the bitmap index of the tile at the specified location.
Useful for collision detection against the background map or detecting collisions with other game entities,
like projectiles or power-ups.

M_FILL_ROW y, tile_index, fg_color, bg_color

Fills an entire row of tiles with the specified bitmap, foreground color and background color. Useful when
setting up a background image, especially when creating vertical gradients or other vertical patterns.

M_FILL_SCREEN tile_index, fg_color, bg_color

Fills the entire screen with the specified bitmap, foreground and background color. Most useful for
clearing the screen or laying down a full-screen background pattern.

WARNING!

Due to the relatively slow speed of the SRAM, try to minimize calls to tile drawing
functions during Game_Update(). There is enough time to draw a reasonable number
of foreground objects, but it’s not hard to exceed the time allocation and damage the TV
signal. Also, be sure to use M_SET_TILE_FG whenever possible as well, since it’s
roughly 1/3 faster than M_SET_TILE.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
207

12.4.5 - Maps & Tile Attribute Tables

The macros listed in the previous section are good for setting up backgrounds and drawing foreground
objects, but when it comes to plotting out intricate background shapes and patterns, especially those
used to depict a detailed game environment, using macros to “hardcode” the desired map is not only
labor intensive and difficult, but quickly eats up your program memory with bloated calls to subroutines.

Since most games need potentially detailed, full-screen backgrounds, another set of macros is available
for storing full-screen maps in program memory and writing them to the visible buffer at runtime. This
allows the entire map to be moved to SRAM in a single call. Furthermore, with the addition of tile
attribute tables, the representation of even a full-screen map is very efficient and will not take a
particularly large amount of program memory. Games can comfortably use three or even four full-screen
maps while still having enough code space left over for full-featured game logic and tile bitmaps.

12.4.5.1 - Tile Attribute Tables

As discussed earlier, the tile screen is 16x24 and requires 3 bytes of data to represent a single tile.
However, 16 * 24 * 3 = 1152 bytes is over a fourth of the available program memory on the SX52! One
map alone would take a major chunk of program memory away from the game logic and tile bitmaps, and
to make matters worse, many games need more than one map.

Clearly, maps must be stored in a much smaller format. One might next consider data compression as a
solution, but this is hardly a viable option for three reasons:

• The compression ratio would vary wildly depending on the map data itself, meaning only some maps
would benefit significantly. Others would compress poorly and in such cases, the problem would
remain unsolved.

• The compressed data would not be human-readable or human-editable, meaning an entire separate
utility would be required just to generate the map data declarations. This would add an extra step to
every modification made to a map, and would make spontaneous tweaks and changes difficult.

• The code to decompress the map into SRAM could very well be complex enough to outweigh the size
reduction of the map data in the first place.

Since the data cannot be compressed per se, it is simply represented in a simpler format. The depth of
detail allowed in a given tile map is limited by confining each tile location in the map to a selection of 16
pre-defined tiles. This allows a single tile to be stored in 4 bits, instead of requiring 24 bits for an arbitrary
bitmap index, foreground color, and background color. Since each program word on the SX52 is 12 bits
wide, three tiles can be stored in a single word. This means that a 16x24 map can be represented with
only (16 * 24) / 3 = 128 bytes. However, since each 16-tile row now requires a total of 64 bits, and 12-bit
program words do not divide evenly into 64, the row must be rounded up to 72 bits, or 6 program words.
This brings the total for an entire map to 6 * 24 = 144 bytes, which is still a huge savings compared to the
original requirement of 1152.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
208

Maps are loaded from program memory into the visible buffer in SRAM with the M_LOAD_MAP macro:

M_LOAD_MAP map, tat

To call this macro, pass the label pointing to your map data like this:

M_LOAD_MAP my_map, tile_attr_table

What’s tile_attr_table? This second label points to a tile attribute table, which is a 16-element
table that M_LOAD_MAP uses to convert each 4-bit tile index found in the map to an actual 3-byte tile
definition. Each entry in the table is a complete tile definition, consisting of a bitmap index, foreground
color and background color.

Before designing a map, you create a corresponding tile attribute table that defines the tiles available to
that map. Think of it as a “tile palette”. You can create as many tile attribute tables as you want, allowing
different maps to choose from different selections. While 16 unique tiles may not sound like much, it’s
enough to comfortably design most types of game environments, and since different maps can have their
own attribute tables, the limitation is minimal. Besides, the ability to store full-screen maps with any level
of detail in such an efficient and readable format is well worth it. And remember, this limitation does not
effect which tiles you can draw to the screen after loading the map, such as your foreground objects.

TIP Even though a map loaded by M_LOAD_MAP is limited to 16 unique tiles, no one ever
said you can’t draw your own tiles to the screen on top of the map after it’s loaded.

tile_attr_table points to the default tile attribute table, which looks like this:

tile_attr_table

 DW 0, WHITE, BLACK, 0 ; 0
 DW 0, WHITE, BLACK, 0 ; 1
 DW 0, WHITE, BLACK, 0 ; 2
 DW 0, WHITE, BLACK, 0 ; 3
 DW 0, WHITE, BLACK, 0 ; 4
 DW 0, WHITE, BLACK, 0 ; 5
 DW 0, WHITE, BLACK, 0 ; 6
 DW 0, WHITE, BLACK, 0 ; 7
 DW 0, WHITE, BLACK, 0 ; 8
 DW 0, WHITE, BLACK, 0 ; 9
 DW 0, WHITE, BLACK, 0 ; A
 DW 0, WHITE, BLACK, 0 ; B
 DW 0, WHITE, BLACK, 0 ; C
 DW 0, WHITE, BLACK, 0 ; D
 DW 0, WHITE, BLACK, 0 ; E
 DW 0, WHITE, BLACK, 0 ; F

By default, each entry is defined as tile bitmap zero with a white foreground and black background. As
you design your map, you will modify the table to include other tiles, with the appropriate bitmap and
colors. For example, here’s the attribute table used to define the maps in the Venture demo. As you can
see, it took all 16 available tile definitions:

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
209

tile_attr_table

 DW 0, COLOR_7 + 2, COLOR_7 + 3, 0 ; 0 - Grass
 DW 2, COLOR_14 + 3, COLOR_14 + 4, 0 ; 1 - Dirt Road
 DW 2, COLOR_14 + 0, COLOR_14 + 1, 0 ; 2 - Dirt Road Shadow (full)
 DW 1, COLOR_14 + 4, COLOR_14 + 1, 0 ; 3 - Dirt Road Shadow (diagonal)
 DW 4, COLOR_0 + 4, COLOR_0 + 2, 0 ; 4 - Pond
 DW 6, BLACK + 3, BLACK + 5, 0 ; 5 - Castle Brick (straight)
 DW 7, BLACK + 5, BLACK + 7, 0 ; 6 - Castle Brick (perspective left)
 DW 8, BLACK, BLACK + 3, 0 ; 7 - Castle Brick (perspective right)
 DW 0, COLOR_7 + 0, COLOR_7 + 1, 0 ; 8 - Grass Shadow (full)
 DW 1, COLOR_7 + 3, COLOR_7 + 1, 0 ; 9 - Grass Shadow (diagonal)
 DW 9, COLOR_7 + 3, BLACK + 7, 0 ; A - Castle + Grass Shadow (full)
 DW 10, COLOR_7 + 3, BLACK + 3, 0 ; B - Castle + Grass Shadow (diagonal)
 DW 11, BLACK, BLACK + 5, 0 ; C - Castle Window
 DW 6, BLACK + 1, BLACK + 3, 0 ; D - Castle Brick (shadow)
 DW 12, BLACK, BLACK + 2, 0 ; E - Castle Gate
 DW 3, COLOR_0 + 4, COLOR_0 + 2, 0 ; F - Pond Rim

As general good practice, make sure to label your tiles as you define them with a comment so you don’t
forget which tile each entry refers to.

By default, the tile attribute table is allocated 64 bytes below the base of the tile bitmap data to ensure no
space is wasted.

12.4.5.2 - Maps

Now that you’ve seen the definition of both tile bitmaps and tile attribute tables, let’s take a look at the
maps themselves. A default blank map is included in the engine source code at the screen_0 label:

screen_0

 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000
 DW $000,$000,$000,$000,$000,$000

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
210

Remember, even though 6 program words are needed to represent a full 16-tile row, the last two nibbles
of the last word are not used. For example, to cover a row with tile index $C, you would enter the
following:

DW $CCC,$CCC,$CCC,$CCC,$CCC,$C00

The organization of the map code directly maps to the tile arrangement on screen—left to right, top to
bottom.

TIP Use hex digits to fill in tile maps, as they never need a second digit and will easily keep
the map data aligned visually within your code.

NOTE
Note that the last two nibbles remain $0. While you could set them to $C if you want, it
would have no effect. It’s best to leave these tiles zeroed to clearly define the edge of
the map. If you think details you’re drawing into the map are not being loaded properly,
make sure you aren’t accidentally drawing these details into these unused last nibbles.

12.4.6 - Designing a Game Loop

At this point, you’ve seen how framebuffers, tiles, maps and tile attribute tables work together to create
onscreen graphics. Now, using Game_Init() and Game_Update(), let’s see how a complete game
loop works.

12.4.6.1 - Initializing the Game

The first step, of course, is adding your initialization code to Game_Init(). In addition to your own game
logic setup, an important step to take within this subroutine is copying your maps from program memory
to the SRAM. Check out this example code:

M_LOAD_MAP screen_0, tile_attr_table
M_COPY_SCREEN #$00, #$00, #$00, #$60

M_LOAD_MAP screen_1, tile_attr_table
M_COPY_SCREEN #$00, #$00, #$00, #$C0

M_LOAD_MAP screen_2, tile_attr_table
M_COPY_SCREEN #$00, #$00, #$01, #$20

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
211

Each call to M_LOAD_MAP copies the program memory map into the visible buffer in SRAM. Each
corresponding call to M_COPY_SCREEN copies the visible buffer to a non-visible, extra framebuffer
somewhere else in SRAM. Since this all occurs before the TV signal is generated, the user never sees
these maps during their brief time in the visible buffer.

Note the source and destination addresses of the maps in each M_COPY_SCREEN call. In each case, the
source address is $0000. The destinations, $0060, $00C0, and $0120, are all exactly one framebuffer’s
size (96 pages) apart.

WARNING!
Remember, M_COPY_SCREEN expects the source and destination addresses as 12-bit
page addresses, not 16-bit byte addresses. So if your framebuffer starts at $01D0, pass
$01D to M_COPY_SCREEN.

The most important thing Game_Init() can do to prepare the game for execution is loading the maps
into SRAM. The rest of the function is your own game-specific initialization.

12.4.6.2 - Updating the Game

Once per frame, during the V-blank, the Tile Graphics Engine calls Game_Update () and gives the
game a chance to handle input, redraw the screen, update its own internal variables, and so on. The
majority of this function is of course the implementation of your game logic, but there are a number of
things it must do graphically that we will discuss here.

In the case of most games, a constant background is needed underneath the foreground objects. Since
the drawing of a foreground object to the buffer is a permanent change (until that tile is again overwritten),
moving objects will leave a “trail” of their previous locations unless they are somehow erased. Fortunately
for us, we have all of our backgrounds already copied from program memory into secondary SRAM
framebuffers, which means they’re ready to be copied back into the visible buffer at any time.

Once again the M_COPY_SCREEN macro comes into play. This time, the source framebuffer is located at
an arbitrary page address in SRAM, and the destination is the visible buffer located at address zero. The
first order of business in Game_Update() is usually repainting the background, like so:

M_COPY_SCREEN #$01, #$20, #$00, #$00

The source background is located at $0120, which was the third of three maps loaded in Game_Init().
Of course, depending on the needs of your game, you may have multiple backgrounds and will most
likely need to add some simple logic to determine which background should be drawn based on the
game’s state.

With the background repainted, the visible buffer is once again a clean slate upon which the foreground
objects and interface can be drawn. In most cases, M_SET_TILE_FG is the weapon of choice. This

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
212

macro will draw onto the visible buffer but will not change the background color of the destination tile. By
only changing the tile bitmap and foreground color, a convincing approximation of sprite transparency can
be achieved in most cases. Another advantage to M_SET_TILE_FG is that it’s faster than M_SET_TILE,
since it has one less attribute to modify.

Despite the blazing speed of the SX52, you face two major bottlenecks inside Game_Update(). The first
is the extremely slow speed of the external SRAM when compared to the SX52’s internal RAM and
program memory. This means that accessing the SRAM is an expensive operation that must be
minimized as much as possible. Second, remember that Game_Update() is only allocated a timeslice of
approximately 60,000 cycles. While this is definitely ample time for most games, it tends to go very
quickly the more foreground objects you want to draw.

Copying the entire background map from SRAM is an expensive operation as well, but is relatively
efficient; because the background map is drawn in a totally predictable, left-to-right, top-to-bottom fashion,
numerous optimizations can be taken advantage of. While it should not be called more than once per
frame, it runs about as efficiently as can be expected.

The random drawing of foreground objects, however, has no rhyme or reason and “thrashes” the SRAM
as a result. Few optimizations can be made when the location of the next read or write is not known or
even predictable, and as a result, foreground graphics are relatively inefficient. The general rule of thumb
is to add foreground elements one by one and verify each time that the game still runs without exceeding
its update timeslice. Once you see the signal begin to bend and degrade, you’ve hit the wall and must
either remove foreground objects, or find a way to work around the limitation through some sort of clever
re-organization.

12.4.6.3 - Drawing Complex Graphics over Multiple Frames

One last advanced topic worth discussing is an approach to drawing complex graphics in which multiple
real-time frames are used to build up one complete graphical frame. In other words, instead of drawing
your entire game screen in a single call to Game_Update(), the subroutine could instead be written to
work in phases that are tracked by a global counter

Here’s the general algorithm: In Game_Init(), a counter, called frame_phase for example, is initialized
to zero. Each time Game_Update() is called, frame_phase is used to jump to a specific subroutine
written to draw only a part of the final frame. The trick is that this drawing does not occur in the visible
buffer, but rather another secondary buffer somewhere else in SRAM. After each call to
Game_Update(), frame_phase is incremented. When frame_phase reaches it’s final value (say,
phase 2 or 3), the completed frame is copied with M_COPY_SCREEN into the visible buffer and the phase
counter is reset. Figure 12.6 illustrates this concept.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
213

Figure 12.6 – Building a complex game frame over the course of multiple TV frames.

For example, phase 0 might start building the frame by redrawing the background as discussed earlier,
then perhaps drawing a few of the foreground objects. Phase 1 would then layer on additional foreground
objects, or just flesh out large objects that consist of multiple tiles. Lastly, phase 2 would overlay the
interface, such as player health meters, inventory displays, or perhaps a map of the environment. As a
final step, phase 2 would copy the completed frame to the visible buffer, reset the phase counter, and the
process would begin again on the next frame.

Of course, like everything we’ve seen so far there’s a trade-off to consider. First, all this extra graphical
code may paint your game logic into a corner by consuming too much program memory. Second, the
perceived frame rate of your game will be significantly reduced due to each game frame taking more TV
frames to draw. This is because the Tile Graphics Engine redraws the screen 60 times per second. If, for
example, your game requires two phases (two V-sync Game_Update() passes) to create one completed
game frame, your game would now update at 30 frames per second. Of course, 30 FPS is more than
adequate for any game, but at three or four phases, the frame rate drops to 20 and 15 FPS, respectively.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
214

Around this level things can start to get choppy. Anything above four phases will result in a completely
unacceptable frame rate for all but the slowest games.

12.5 - Case Study: The Shooter Demo
The shooter demo was the first program written to demonstrate the Tile Graphics Engine, and is
decidedly simple as a result. The objectives were as follows:

• A static background consisting of water, a mountainous terrain, and a gradient sky that fades upward
to black.

• A non-functional example of a game display, consisting of a score readout and the number of ships
left in reserve.

• A moving, player-controlled ship that is bound to the area between the left and right side of the
screen, below the game display and above the mountain backdrop.

• One laser projectile that can be fired from the ship.

Check out figure 12.7 for a screenshot of the game.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
215

Figure 12.7 – The shooter demo.

The source code to the shooter demo can be found here:

Tile_Engine\shooter_1_0.src

12.5.1 - The Graphics

Tile graphics form the foundation for any Tile Graphics Engine game. The shooter demo needs the
following tiles:

• The player ship, facing two directions. Since an 8x8 ship would be a bit too small, we’ll create a larger
ship with multiple tiles. The ship used in the game is 24x8 pixels, or 3 tiles horizontally by 1 tile
vertically.

• Numeric digits 0-9 and the word “SCORE” drawn in condensed letters over the span of 3 tiles.
Condensing the word “SCORE” not only saves tile memory, but screen real estate as well. Lastly, a
small 8x8 ship icon is used to represent the remaining ships on the right-hand side of the screen.

• A handful of terrain tiles for creating seamless water, a shoreline, a mountain range with varying
mountain heights, and a fading sky background.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
216

12.5.2 - Data Structures
Given the objectives listed at the beginning of this section, we can then outline the data structures
necessary to keep track of everything. The following are the variable declarations used by the program:
; **** Game logic

ORG BANK_GAME

ticks DS 1 ; Tick count (increments once per frame)
p_x DS 1 ; Player X, Y coordinates
p_y DS 1
p_dir DS 1 ; Player direction
l_x DS 1 ; Laser X, Y coordinates
l_y DS 1
l_dir DS 1 ; Laser direction
l_active DS 1 ; Is the laser currently active?
exhaust DS 1 ; Ship exhaust color

ticks is updated every frame and is used for timing of various events. We’ll see how this is used later.
p_x, p_y and p_dir track the location and the facing direction of the player. l_x, l_y and l_dir track
the location and direction of movement of the laser. l_active is a flag that determines if the laser is
visible onscreen, as well as whether or not another laser can be fired (since only one can be onscreen at
once). Lastly, exhaust is an animation flag that toggles on and off, used to achieve the exhaust flicker
effect.

12.5.3 - Initialization

The first game-specific code that will be automatically run by the Tile Graphics Engine is Game_Init().
The game variables are initialized, setting the player to the center of the screen and facing to the right,
turning off the laser (since nothing has been fired yet), and setting the exhaust flag to $FF to make it
visible (we’ll see how this works shortly). The ticks counter is also reset, which will be important during
Game_Update().

; **** INITITALIZE GAME LOGIC ***

_BANK BANK_GAME
CLR ticks ; Reset the tick counter
MOV p_x, #6 ; Start at the center of the screen
MOV p_y, #8
MOV p_dir, #RIGHT ; Start facing right
MOV l_active, #FALSE ; The laser has not been fired
MOV exhaust, #$FF ; The ship exhaust is visible

Next, the background is set up. Normally, backgrounds are best implemented with maps, tile attribute
tables, and the M_LOAD_MAP macro, but in this demo was written before these features were available. It
remains as an example of how backgrounds can be manually assembled through code instead of data,
should you ever decide to take this route. Here’s the code for setting up the background:

_BANK BANK_VIDEO

; Clear background
M_FILL_SCREEN #0, #WHITE, #BLACK

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
217

; Water/terrain/mountain/sky background
M_FILL_ROW #23, #20, #COLOR_0 + 6, #COLOR_0 + 4
M_FILL_ROW #22, #20, #COLOR_0 + 7, #COLOR_0 + 4
M_FILL_ROW #21, #19, #WHITE, #COLOR_0 + 4
M_FILL_ROW #20, #18, #WHITE, #COLOR_12 + 2
M_FILL_ROW #19, #15, #COLOR_12 + 2, #COLOR_12 + 4
M_FILL_ROW #18, #16, #COLOR_12 + 3, #COLOR_14 + 5
M_FILL_ROW #17, #17, #COLOR_14 + 5, #COLOR_14 + 3
M_FILL_ROW #16, #17, #COLOR_14 + 3, #COLOR_14 + 1
M_FILL_ROW #15, #17, #COLOR_14 + 1, #BLACK

; Distribute randomly sized mountains over mountain range row
M_SET_TILE #3, #18, #21, #COLOR_12 + 3, #COLOR_14 + 5
M_SET_TILE #4, #18, #22, #COLOR_12 + 3, #COLOR_14 + 5
M_SET_TILE #12, #18, #22, #COLOR_12 + 3, #COLOR_14 + 5
M_SET_TILE #7, #18, #21, #COLOR_12 + 3, #COLOR_14 + 5

; **** Score display icon
M_SET_TILE #0, #0, #1, #WHITE, #COLOR_2 + 2
M_SET_TILE #1, #0, #2, #WHITE, #COLOR_2 + 2
M_SET_TILE #2, #0, #3, #WHITE, #COLOR_2 + 2

; **** Score
M_SET_TILE #4, #0, #4, #WHITE, #BLACK
M_SET_TILE #5, #0, #7, #WHITE, #BLACK
M_SET_TILE #6, #0, #5, #WHITE, #BLACK
M_SET_TILE #7, #0, #8, #WHITE, #BLACK

; **** Life display
M_SET_TILE #13, #0, #23, #COLOR_14 + 7, #BLACK
M_SET_TILE #14, #0, #23, #COLOR_14 + 7, #BLACK
M_SET_TILE #15, #0, #23, #COLOR_14 + 7, #BLACK

First and foremost, note that the first line in this code sets the bank to BANK_VIDEO. This is important
sine all tile drawing macro rely on the video bank. Calling any tile drawing macro, such as M_SET_TILE
and M_FILL_ROW, require the video bank be active. Once the calls are finished the bank is of course
once again under your control.

Since the background is primarily horizontal, the M_FILL_ROW macro is used to draw the brunt of it.
M_SET_TILE is used on the mountain tile row to insert some varying mountain heights that give it a more
natural look. Lastly, M_SET_TILE is again used to manually construct the “SCORE” icon, followed by the
score itself, and the life display on the other side of the screen.

Check out figure 12.8 for a screenshot of the game background.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
218

Figure 12.8 – The shooter demo background.

12.5.4 - Updating the Game

At this point, the game has a background and a non-functional example of a typical game display. Now
it’s time to add some functionality. Each time Game_Update() is called, the game is updated by
performing the following tasks:

• Update the tick counter for use in timing.

• Erase the on-screen game objects (but not the background) so they can be moved without leaving a
trail. In the case of the shooter demo, only two game objects can exist on the screen at any one
time—the ship, and if active, the laser.

• Input is read from the joystick, allowing the player to move and shoot. As the player moves, they are
clipped to the screen region above the background and below the display. The left and right sides of
the screen are boundaries as well. Lastly, the player can only fire if the last laser fired has already
moved off-screen.

• The laser, if active, is moved in whichever direction the player was facing when it was fired.

• The game objects are drawn. In the case of the laser, it is only drawn if it is active. Lastly, the ship’s
exhaust is drawn if the exhaust flag is nonzero. By toggling this flag each frame, the exhaust will
flicker on and off. Depending on the direction the player is facing, one of two sets of player ship tiles
is used.

• Let’s take a look at each of these tasks in more detail.

12.5.4.1 - Erasing the Game Objects

In the case of the shooter demo, the background area the player over which the player can appear is
solid black. This means that nothing needs to be redrawn each frame, so instead, the player (and laser, if

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
219

visible) are erased with black tiles using p_x, p_y, l_x, and l_y. Here’s the code to erase the player and
exhaust:

_BANK BANK_GAME
MOV t4, p_x
MOV t5, p_y
_BANK BANK_VIDEO
M_SET_TILE t4, t5, #0, #BLACK, #BLACK

_BANK BANK_GAME
MOV t4, p_x
MOV t5, p_y
_BANK BANK_VIDEO
INC t4
M_SET_TILE t4, t5, #0, #BLACK, #BLACK

_BANK BANK_GAME
MOV t4, p_x
MOV t5, p_y
_BANK BANK_VIDEO
ADD t4, #2
M_SET_TILE t4, t5, #0, #BLACK, #BLACK

_BANK BANK_GAME
MOV t4, p_x
MOV t5, p_y
_BANK BANK_VIDEO
ADD t4, #3
M_SET_TILE t4, t5, #0, #BLACK, #BLACK

12.5.4.2 - Handling Player Input

Next, the player’s joystick is read to determine if the ship should move, or if a laser should fire. The first
step is calling Read_Joysticks(). Read_Joysticks() is called once every four frames, instead of
each frame, to prevent the player from moving too quickly.

; Check for input every 4 ticks
MOV t0, ticks
AND t0, #3
CJNE t0, #0, :skip_handle_input

; Read the joysticks
CALL @Call_Read_Joysticks

The joystick is read, and an 8-bit vector of each button’s status is stored in t0. Check out table 12.1 for a
listing of each bit’s value.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
220

Table 12.1 – Bit meanings in joystick status vector.

Bit Value

0 Up Direction

1 Down Direction

2 Left Direction

3 Right Direction

4 Button

NOTE

Notice that the Read_Joysticks() subroutine appears in the code as a call to
Call_Read_Joysticks(). Call_ is appended to all subroutines because they are
called through a jump table rather than directly. Read_Joysticks() and
Call_Read_Joysticks() refer to the same subroutine, but only
Call_Read_Joysticks() should be used in code.

All joystick status bits are active low, meaning they’re 0 when the corresponding button is down, and 1
when the corresponding button is up. So while you may expect the a status bit to be set when the button
is being depressed, the opposite is true.

The following code handles the player’s directional movement based on these principals:

 ; Save current location for bounds checking
 MOV t2, p_x
 MOV t3, p_y

 ; Check each direction
 SB t0.2 ; Move player left
 DEC p_x
 SB t0.3 ; Move player right
 INC p_x
 SB t0.0 ; Move player up
 DEC p_y

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
221

 SB t0.1 ; Move player down
 INC p_y

 ; Restore old locations if bounds crossed
 CJA p_y, #0, :skip_clip_y_min ; Check minimum Y bound
 MOV p_y, t3
:skip_clip_y_min
 CJB p_y, #15, :skip_clip_y_max ; Check maximum Y bound
 MOV p_y, t3
:skip_clip_y_max
 CJB p_x, #16 - 3, :skip_clip_x ; Check X bounds
 MOV p_x, t2
:skip_clip_x

 ; Change the player's facing position if necessary

 JB t0.2, :skip_face_left
 MOV p_dir, #LEFT
:skip_face_left
 JB t0.3, :skip_face_right
 MOV p_dir, #RIGHT
:skip_face_right

Directional movement is handled in a series of discreet steps. First, the location before the movement is
stored in t2 and t3. This way, if the player ends up moving somewhere beyond the boundaries of the
screen, his original location can be restored. In the case of vertical movement, the player’s location is
directly compared against the bottom of the display (where the score and lives appear) and the top of the
background image. Horizontally, collision differs in one subtle way—because the X location is assumed to
be unsigned, moving past tile 0 wraps around to 255, which means that in both cases of horizontal
bounds crossing, the player’s location will be greater than 15 (the highest possible tile location on the X
axis).

The laser is next, and is fired using a simple algorithm. If a laser is not currently on the screen (based on
the l_active flag), the player is free to fire. In this case, the laser’s position is set to just beyond the
nose of the player’s ship, and the laser’s direction is set to the direction the player is facing. If a laser is
already on the screen, nothing happens. Here’s the code:

 ; Check for laser fire if one is not already active
 CJE l_active, #TRUE, :laser_fire_done

 ; Is a laser being fired?
 JB t0.4, :laser_fire_done

 ; Activate the laser
 MOV l_active, #TRUE

 ; Set the laser's direction and Y location
 MOV l_dir, p_dir
 MOV l_y, p_y

 ; Which direction is the player facing?
 CJE p_dir, #LEFT, :fire_laser_left

 ; Right, so place the laser two tiles to the right of <p_x> to clear
 ; the ship itself
 MOV l_x, p_x
 ADD l_x, #3
 JMP :laser_fire_done

:fire_laser_left

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
222

 ; Left, so place the laser at the player's X position
 MOV l_x, p_x

:laser_fire_done

Now that the player’s input has been handled, the rest of the game objects need updating. As we just
saw, the player can’t fire the laser until the last laser has left the screen, so here’s the code to facilitate
the laser’s movement. The flickering effect of the ship’s exhaust is implemented here as well:

 ; Move the laser every 2 clocks
 MOV t0, ticks
 AND t0, #1
 CJNE t0, #0, :laser_update_done

 ; Which direction is the laser moving?
 CJE l_dir, #LEFT, :move_laser_left

 ; Right
 INC l_x
 JMP :laser_update_done

:move_laser_left

 ; Left
 DEC l_x

:laser_update_done

 ; Basic laser bounds checking
 CJB l_x, #16, :skip_kill_laser
 MOV l_active, #FALSE
:skip_kill_laser

 ; Toggle the exhaust visibility flag every 4 clocks
 MOV t0, ticks
 AND t0, #2
 CJNE t0, #0, :exhaust_toggle_done
break
 NOT exhaust
:exhaust_toggle_done

Everything here should be pretty self explanatory, but one noteworthy detail is the way the exhaust flag
is toggled. Rather than use conditional logic to switch between 0 and 1, a single NOT instruction is used.
Because it was originally initialized to $FF, a NOT operation will toggle each bit to $00. Another NOT will
switch each bit back, setting the value back to $FF. Presto!

The last step is drawing the game objects in their new positions, which doesn’t need much explanation.

12.5.5 - Conclusion

The shooter demo itself is very simple, but it illustrates many concepts that can be used to create
complex games. With its simple formula of drawing a static background, manually erasing each sprite and
redrawing them after accepting player input, many types of games can be created. However, there are
more advanced ways to handle background and foreground graphics using the Tile Graphics Engine,
which we’ll see in the case studies for the following demos.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
223

The shooter demo is a small program with lots of room for expansion. Try hacking some changes into the
game such as allowing multiple projectiles on the screen at once, adding scrolling, or simply adding a
game objective of some type. The layout and gameplay of the demo is conducive to games such as
Defender and Choplifter, for example.

12.6 - Case Study: XGS Bros.
The shooter demo was a nice introduction to writing games with the Tile Graphics Engine, but it wasn’t
particularly functional and was extremely simple. XGS Bros. is a demo written to illustrate more complex
games. Specifically, this one uses the style of Super Mario Bros. to illustrate how platform games can be
created. The demo has the following objectives:

• Display a title screen

• Allow the player to run and jump while colliding properly with the environment, such as platforms and
the ground.

• Provide three screens of environment to explore.

• Animate the player based on movements such as running and jumping.

• Place one animated enemy on each screen that moves between two endpoints.

A screenshot of XGS Bros. can be seen in Figure 12.9.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
224

Figure 12.9 – The XGS Bros. demo.

The source code to the XGS Bros. demo can be found here:

Tile_Engine\xgs_bros_1_0.SRC

If you haven’t read the case study of the shooter demo in the last section, be sure to do so before reading
this one. It covers many simple concepts that will not be repeated here for the sake of brevity.

12.6.1 - Data Structures

The data structures of XGS Bros. are along the lines of the simple variables used in the Shooter, but
expanded to include additional parameters like a gravitational force applied to the player for realistic
jumping, as well as other details.

Also, note that an extra set of variables are set aside from tracking one on-screen enemy, and that these
variables are located in another bank. This is because 16 variables were needed to represent the player
and other game-related variables, and the BANK_GAME bank couldn’t fit the enemy tracking variables as
well.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
225

12.6.2 - Initializing the Game

This time, let’s start by looking at Game_Init() as a whole:

; **** INITITALIZE GAME LOGIC ***

_BANK BANK_GAME
CLR ticks ; Reset the tick counter

; Initialize title screen
MOV state, #STATE_TITLE ; Start on the title screen
MOV bg_index, #WHITE ; Start the blinking "PRESS START!" text on white
MOV button_up, #FALSE ; Not yet waiting for a button up event

; **** LOAD SCREENS INTO FRAMEBUFFERS *********************************

M_LOAD_MAP screen_0, tile_attr_table
M_COPY_SCREEN #$00, #$00, #$00, #$60

M_LOAD_MAP screen_1, tile_attr_table
M_COPY_SCREEN #$00, #$00, #$00, #$C0

M_LOAD_MAP screen_2, tile_attr_table
M_COPY_SCREEN #$00, #$00, #$01, #$20

; **** LOAD THE TITLE SCREEN **

M_LOAD_MAP title_screen, title_screen_tat

Surprisingly, initialization of the XGS Bros. demo is simpler than the Shooter demo, even though XGS
Bros. is by far the more complex game. This is because the Shooter demo builds its background image
manually with calls to M_FILL_ROW and M_SET_TILE. Since XGS Bros. has much more complex
backgrounds (and more of them), as well as a title screen. Instead, the maps are “drawn” into the source
code as data and loaded from program memory into SRAM with M_LOAD_MAP.

Note that this time, the player is not initialized in Game_Init(). This is because the game is now split
into two states—a title screen state, and a gameplay state. If the game is running in the title state, the title
screen is displayed an input is handled differently. If the game is running in the gameplay state, the game
screen is displayed and the user controls the player. When the game initially transitions from the title
screen state to the gameplay state, the player is initialized. Since the initialization is handled then, it can
be ignored for now.

Once the state is initialized, each map is loaded into the visible buffer and then copied to its own
framebuffer elsewhere in SRAM. Lastly, the title screen is loaded into the visible buffer and left there so
the player will see it upon startup.

12.6.3 - Updating the Game

Needless to say, updating the XGS Bros. is more complex than the Shooter demo when it comes to
updating. Not only is the player’s movement more complex, but there is now animation to consider, a
separate enemy character that moves on its own, numerous backgrounds, and two entirely separate
game states. In fact, the logic is so much more complex that it doesn’t fit within a single code page and

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
226

had to be split up into numerous functions. When studying the XGS Bros. source code, you’ll find the
game update logic broken up among the following functions:

Is_Tile_Solid ()
Handle_Input ()
Draw_Objects ()
Init_Enemies ()

We’ll talk more about these functions in the next section, but the XGS Bros. demo source code is too
lengthy to cover in its entirety. Instead, only the key concepts will be covered. All things considered, the
most important and unique functionality of the demo are:

• Collision detection

• Gravity-based jumping

• The enemy

These subjects will be covered in the following sections.

12.6.3.1 - Collision Detection

In the shooter demo, collision detection was done entirely through a couple of hardcoded rules; the player
simply couldn’t pass the boundaries of a rectangle that was established inside all of the non-passable
screen regions, such as the bottom of the score display and the top of the background. In the XGS Bros.
demo, however, the character is in an arbitrarily designed, map-driven environment that does not fall into
such simple rules.

To correctly restrict the player’s movement at the right times, the game must be able to determine exactly
which tile the player is about to pass into, and move the player back to his original position if the tile is
not-passable, or “solid”. Examples of solid tiles are bricks and pipes, while non-solid tiles include the
blank sky tile, clouds, and the vine.

Whenever the player attempts to move, the Is_Tile_Solid() subroutine is called. This subroutine
accepts an X, Y location in t4, t5, and uses them to read from the SRAM visible buffer. The subroutine
returns TRUE or FALSE in t0, indicating whether or not the tile is solid and therefore non-passable. If TRUE
is returned, the caller knows that the tile is solid and will prevent the player from moving. Here’s the code:

Is_Tile_Solid

 ; Get the tile's bitmap index in <t1>
 M_GET_TILE_INDEX t4, t5
 MOV t1, t0

 ; Assume the tile is solid
 MOV t0, #TRUE

 ; Check for each passable tile
 CJE t1, #0, :tile_passable ; Sky
 CJE t1, #9, :tile_passable ; Cloud (Left)

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
227

 CJE t1, #10, :tile_passable ; Cloud (Right)
 CJE t1, #8, :tile_passable ; Vine
 CJE t1, #12, :tile_passable ; Coin
 CJE t1, #13, :tile_passable ; Fire Flower

 ; The tile is solid
 JMP :tile_done

:tile_passable
 MOV t0, #FALSE

:tile_done
 RETP

End_Is_Tile_Solid

The only real logic performed in this subroutine is the series of CJE instructions that compare the tile
index returned by M_GET_TILE_INDEX.

The player is capable of moving in all four directions, two of which are directly controlled by the joystick
(left and right). As an example of how this subroutine is used for collision detection, let’s take a look at the
code that moves the player left in the event that the joystick left direction is down:

 ; Move to the left
 DEC p_x

 ; Skip collision tests if the player moved offscreen
 CJA p_x, #15 - 1, :move_right_done

 ; Check for collisions along the left three player tiles

 ; X, Y
 MOV t4, p_x
 MOV t5, p_y
 CALL @Call_Is_Tile_Solid
 CJE t0, #TRUE, :left_collision

 ; X, Y + 1
 MOV t4, p_x
 MOV t5, p_y
 INC t5
 CALL @Call_Is_Tile_Solid
 CJE t0, #TRUE, :left_collision

 ; X, Y + 2
 MOV t4, p_x
 MOV t5, p_y
 ADD t5, #2
 CALL @Call_Is_Tile_Solid
 CJE t0, #TRUE, :left_collision

 ; No collisions
 MOV p_x_last, p_x ; Update cached player position
 MOV p_y_last, p_y
 JMP :move_left_done

 ; The player collided moving left
:left_collision
 MOV p_x, p_x_last

:move_left_done

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
228

As in the shooter demo, the player is moved first with the DEC instruction. Once moved, the new location
is checked for collisions along all three vertical tiles of the player (since the player is three tiles tall). If a
collision occurred, the player’s last position, already stored in p_x_last, p_y_last, is restored. If not,
p_x_last and p_y_last are updated with the new position before handling the other movement
directions.

12.6.3.2 - Gravity-Based Jumping

Jumping in a platform game has to be reasonably realistic insofar as the player must follow a parabolic
arc from the start of the jump to the landing. The easiest way to achieve this effect is by constantly
applying a downward gravity vector to the player’s location, then giving the player a boost of upward
velocity when the jump button is pressed. This velocity lifts the player into the air but is quickly dampened
and ultimately negated by the constant gravity vector, causing the player to rise quickly, hang in the air for
just a moment, then fall back to the ground. Of course, whenever the player runs into a solid tile, the
downward movement must stop. Check out figure 12.10 for a visual reference of this technique.

Figure 12.10 – Using vectors to simulate gravity and upward movement in jumps.

The key to smooth movement in these operations is the use of fractional values. However, since the
SX52 only natively supports 8-bit integer arithmetic, we’ll have to implement our own solution using fixed-
point math. While many fixed-point formats could be used, I opted for a simple 8.8 approach to avoid
having to mask and shift bit regions of a single integer value. It makes the code easier to read and a bit
faster. Of course, memory can run out fast on the XGS ME, and in a tighter situation, using two full bytes
for the whole and fractional values might not be possible.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
229

First, the player’s vertical location is stored in p_y and p_y_f. When the player is displayed, the value in
p_y alone is used. However, when the player moves vertically, the velocity vector is first added to p_y_f
and, only in the event of an overflow, is p_y incremented as well.

p_yv and p_yv_f store the player’s vertical velocity, which is added to the player’s vertical location at
each frame to simulate gravity. This value is of course fixed-point as well to allow for fractional velocities.

To handle vertical movement, the following steps are taken at each frame:

1. Apply the downward gravity force to the player using a fixed-point, fractional value. Make sure the
player’s downward velocity does not exceed a certain ceiling.

2. Check for collisions along the player’s two bottom tiles. If a collision occurred, clear the player’s
downward velocity. This prevents the player from falling “through” solid objects.

3. Check for collisions along the player’s two upper tiles, in case the player is moving upward (as in a
jump). If a collision occurred, dampen the player’s upward velocity. This causes the player to
immediately fall back down upon impact.

With this strategy in mind, the actual code is pretty easy to understand:

 ; Clip the gravity pull at 1.0 if the pull is not negative (upward)
 CJA p_yv, #127, :clip_yv_done
 CJB p_yv, #1, :clip_yv_done
 MOV p_yv, #1
 CLR p_yv_f
:clip_yv_done

 ; 8.8 fixed-point addition of gravity to player Y-position
 ADD p_y_f, p_yv_f
 ADDB p_y, C
 ADD p_y, p_yv

 ; Add a fractional gravity coefficient to p_yv
 ADD p_yv_f, #16
 ADDB p_yv, C

 ; Check for collisions along the bottom two player tiles

 ; X, Y + 2
 MOV t4, p_x
 MOV t5, p_y
 ADD t5, #2
 CALL @Call_Is_Tile_Solid
 CJE t0, #TRUE, :down_collision

 ; X + 1, Y + 2
 MOV t4, p_x
 MOV t5, p_y
 INC t4
 ADD t5, #2
 CALL @Call_Is_Tile_Solid
 CJE t0, #TRUE, :down_collision

 ; Check for collisions along the top two player tiles

 ; X, Y
 MOV t4, p_x

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
230

 MOV t5, p_y
 CALL @Call_Is_Tile_Solid
 CJE t0, #TRUE, :up_collision

 ; X + 1, Y
 MOV t4, p_x
 MOV t5, p_y
 INC t4
 CALL @Call_Is_Tile_Solid
 CJE t0, #TRUE, :up_collision

 ; Check for the player crossing the vertical screen boundaries
 MOV t0, p_y ; Translate <p_y> into a 1-24 range for easier bounds
checking
 INC t0
 CJB t0, #1, :up_collision ; Check collisions with the top of the screen
 CJA t0, #24 - 2, :down_collision ; Check collisions with the bottom of the screen

 ; No collisions
 JMP :move_y_done

 ; The player collided moving up
:up_collision
 MOV p_y, p_y_last
 CLR p_yv ; Lightly reverse player's vertical velocity
 MOV p_yv_f, #32
 JMP :move_y_done

 ; The player collided moving down
:down_collision
 MOV p_y, p_y_last
 CLR p_yv ; Reset player's vertical velocity
 CLR p_yv_f
 MOV p_can_jump, #TRUE ; The player can jump again

:move_y_done

12.6.3.3 - The Enemy

Each background in the demo features an enemy moving in a unique location. While the enemy and
player don’t actually interact, the enemy is animated, and does adhere to the layout of the level. This is
accomplished with the following variables, seen in the BANK_ENEMIES bank listed above:

ORG BANK_ENEMIES

e_x DS 1 ; Enemy X, Y location
e_y DS 1
e_x0 DS 1 ; Enemy path start and finish
e_x1 DS 1
e_dir DS 1 ; Enemy direction of movement
e_frame DS 1 ; Enemy animation frame

e_x and e_y track the enemy’s current on-screen location. Each time the enemy moves, it is moved in
the direction stored in e_dir. The enemy constantly moves back and forth between two path endpoints
set by e_x0 and e_x1, and along the way is animated between two frames of animation tracked by
e_frame. Figure 12.11 illustrates how these variables work.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
231

Figure 12.11 – The enemy tracking variables.

In order to place the enemy in the correct position in each map, the Init_Enemies() subroutine is
called each time a new map is loaded. This subroutine checks for one of three cases (map 0, 1 or 2) and
hardcodes the enemy’s location, endpoints and direction manually:

Init_Enemies

 ; Which background is active?
 _BANK BANK_GAME
 MOV t0, bg_index

 ; Clear the enemy animation frame
 _BANK BANK_ENEMIES
 CLR e_frame

 ; Map 0
 CJNE t0, #0, :bg_index_1
 MOV e_x, #9
 MOV e_y, #12
 MOV e_x0, #7
 MOV e_x1, #13
 MOV e_dir, #LEFT
 RETP

 ; Map 1
:bg_index_1
 CJNE t0, #1, :bg_index_2
 MOV e_x, #9
 MOV e_y, #4
 MOV e_x0, #9
 MOV e_x1, #15
 MOV e_dir, #RIGHT
 RETP

 ; Map 2
:bg_index_2
 MOV e_x, #12
 MOV e_y, #21
 MOV e_x0, #10
 MOV e_x1, #15
 MOV e_dir, #RIGHT
 RETP

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
232

End_Init_Enemies

It should be noted of course that in most cases, a lookup table with such information is preferable to a
hardcoded subroutine such as this, but in the case of only three levels, I felt this code was somewhat
more readable and explains the point a bit more directly.

When the screen is drawn, the enemy is drawn using e_x and e_y. The enemy has two frames of
animation, which are controlled by the e_frame variable. Here’s the code for drawing the enemy:

; Draw the enemies
_BANK BANK_ENEMIES
MOV t4, e_x ; Enemy X, Y location
MOV t5, e_y
MOV t0, e_frame ; Enemy animation frame
ADD t0, #40
_BANK BANK_VIDEO
M_SET_TILE t4, t5, t0, #COLOR_13, #COLOR_0 + 4

Every 8 clocks, the enemy is moved using e_x0 and e_x1 as the endpoints of its path. The code here
simply moves the enemy in its current direction, checks for collisions with either endpoint, and reverses
the direction if necessary:

 ; Move enemies every 8 clocks
 MOV t0, ticks
 AND t0, #7
 CJNE t0, #0, :move_enemies_done

 _BANK BANK_ENEMIES

 ; Toggle the animation frame
 XOR e_frame, #%00000001

 ; Move the enemy based on its direction
 CJE e_dir, #LEFT, :move_enemy_left

 ; Right
 INC e_x ; Move the enemy
 CJBE e_x, e_x1, :e_x1_ok ; Check against X1 bound
 MOV e_x, e_x1 ; Clip the position to the X1 bound
 MOV e_dir, #LEFT ; Switch directions
:e_x1_ok
 JMP :move_enemies_done

 ; Left
:move_enemy_left
 INC e_x0 ; Translate into 1-16 range for easy bounds checking
 CJAE e_x, e_x0, :e_x0_ok ; Check against X0 bound
 MOV e_x, e_x0 ; Clip the position to the X0 bound
 MOV e_dir, #RIGHT ; Switch directions
:e_x0_ok
 DEC e_x0 ; Translate back into 0-15 range
 DEC e_x

:move_enemies_done

These three simple blocks of code create an enemy that, aside from player interaction, is a convincing
part of the game world. By extending this enemy tracking info into an array, multiple enemies would be

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
233

easily supported, and by adding player collision detection, would be able to actually hurt the player upon
contact.

12.6.4 - Conclusion

The XGS Bros. demo represents a new dimension of possible games using the Tile Graphics Engine.
Platform games are not trivial undertakings, but are not only rewarding to create but fun to play. With
enough effort and some clever planning, a complete game could certainly be based on the humble
beginnings presented in this demo.

XGS Bros. is written in a straightforward manner and should be easy to hack. Try modifying the game to
include multiple enemies, new maps, or functional interaction between the player and the enemy
characters. One unique challenge would be making it possible to collect the coins, which would require
physically changing the SRAM framebuffer in which they reside so they do not appear again on the
screen.

12.7 - Case Study: Venture
The last Tile Graphics Engine demo we’ll be discussing is called Venture, and is loosely based on the
classic Atari game Adventure. It features a large game world, large enemy sprites, color effects and a
complete objective-based quest. Starting at the locked gate to a castle, the player must collect three keys,
a glowing blue chalice, and approach the gate with the items in hand. Along the way, three dragons guard
the keys and attack the player when he approaches. Check out Figure 12.12 for a screenshot.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
234

Figure 12.12 – The Venture game.

The code for Venture is the most complex of the three Tile Graphics Engine demos, and as in the case of
the XGS Bros. case study, we’ll only be taking a look at the relevant and unique sections. Again, be sure
to read both of the preceeding case studies before attempting to read this, as it will make references to
topics they have already covered without rehashing them.

The source code to Venture can be found here:

Tile_Engine\venture_1_0.SRC

Many aspects of Venture rely on techniques already covered, such as:

• Player Movement
The player can move up, down, left and right. Because of the game’s overhead perspective, there is
no gravity to consider when moving vertically. These directions are actually represented better as
north, south, east and west, which is how you’ll see them in the code. In this way, the movement of
the player is actually simpler than in XGS Bros. and more like the Shooter demo.

• Maps and Collision Detection
Like XGS Bros., Venture uses map-driven backgrounds and tile-based collision detection. Collisions
are handled with another Is_Tile_Solid() subroutine. It simply uses different tile values.

• Animation
Unlike XGS Bros., the Venture character is not animated. In fact, his facing position doesn’t even
change with his direction of movement. Because of this, drawing the player is very easy.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
235

However, other aspects of the game are more complicated than the previous demos, and warrant further
discussion:

• The World Map
Venture takes place in a large castle. Each screen of this castle must not only be aware of its own
background map, but must link up with other background maps through the north, south, east and
west doors.

• Enemy Movement
Unlike the simple back-and-forth movement of the XGS Bros. enemy, Venture features dragons that
actually track the player and hurt him on contact.

• Color Effects
Flashing/pulsating color effects are used to represent special items and events.

12.7.1 - Overview

Before getting into the specifics, let’s discuss a technical overview of how Venture is designed and
implemented.

12.7.1.1 - The Game Environment

Venture takes place in a castle environment consisting of multiple, linked courtyards. Each courtyard has
a doorway to the north, south, east and west, each of which can be either permanently blocked, or linked
to another courtyard. A map of 12 courtyards was created to link these “rooms” together, providing a large
game world to explore. The game only uses three unique maps, but these maps are interspersed
throughout the 12 rooms to create a varying environment. Check out Figure 12.13 to see the map of the
castle.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
236

Figure 12.13 – A map of Venture’s castle.

In three of the 12 rooms, dragons guard special keys the player must collect. In another one of the rooms,
a glowing blue chalice can be found (without a protecting dragon). A large gate leading into the castle is
in the room in which the game starts, which is unlike any of the other rooms. In each room, various tiles
are solid, preventing the player from passing through them to create a path that the player must follow.
These solid tiles include stone walls, pillars, and pools of water.

12.7.1.2 - The Object of the Game

The purpose of the game is to traverse the rooms of the castle, picking up the three keys while avoiding
the dragons. The player cannot pick up the blue chalice found in the southernmost room before all three
keys have been collected. Once the keys are in hand, the player can take the chalice to the main castle
gate (found in the starting room). When the player makes contact with the gate with the chalice, the
player takes on the chalice’s blue glow, indicating the game is over.

Along the way, the player will encounter the three dragons. The dragons need only make physical contact
with the player to inflict damage, and if the player is killed, he will appear in a flashing red color. The

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
237

dragons don’t feature any sort of actual AI or strategy-based movement; instead, they simply fly towards
the player.

A blue “health meter” is found in the upper-left corner of the screen. As the player is hurt, the meter
becomes increasingly white, until finally the player dies. The keys the player has collected appear on the
upper-right corner.

12.7.2 - Data Structures

Venture has the most variables of all three demos to track the numerous game entities and states. Let’s
take a look at the declarations, bank by bank.

First of up is BANK_GAME, which is used by the central game logic:

ORG BANK_GAME

ticks DS 1 ; Tick count (increments once per frame)
stick_state DS 1 ; State of joystick
button_up DS 1 ; Tracks a button up event
state DS 1 ; Current game state
p_x DS 1 ; Player X, Y location
p_y DS 1
p_x_last DS 1 ; X, Y location before last move
p_y_last DS 1
p_dir DS 1 ; Player facing direction
p_frame DS 1 ; Player animation frame
p_item DS 1 ; Is the player holding an item?
p_life DS 1 ; Player life energy
p_items DS 1 ; Items in inventory (bitvector: 0-2 = keys, 3 = chalice)
game_state DS 1 ; Game state (running, over, completed)
seq_timer DS 1 ; Timer for special sequences

Many of these are variables are simply used for menial tasks that pertain to any game or demo, such as
state transitions, input, tick counting, and so on. In the case of the Venture demo, the relevant specifics
include p_x, p_y, which track the player’s location, p_item, which tracks whether or not the player is
holding an item, p_life, which is the player’s remaining health, and p_items, a bit vector with a
separate flag for each of the four items.

The next bank, BANK_ROOM, is used to describe the room the player is currently in:

ORG BANK_ROOM

r_room DS 1 ; Index of current room
r_map_index DS 1 ; Tile map
r_doors DS 1 ; Bit vector of doors (open/closed)
r_n_dest DS 1 ; North door destination map
r_e_dest DS 1 ; East door destination map
r_s_dest DS 1 ; South door destination map
r_w_dest DS 1 ; West door destination map

r_room is an index into the world map structure (covered below) that tracks the player’s current room.
r_map_index is the tile map used to draw the room on the screen. r_doors is a 4-bit vector in which

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
238

each of the first four bits represents one of the doors in the room. A value of 1 indicates the bit’s
corresponding door is open. A value of 0 means it’s closed. Lastly, r_n_dest, r_e_dest, r_s_dest
and r_w_dest are indices into the world map as well, linking the map to its adjacent maps through each
door.

The last bank, BANK_OBJECTS, tracks game “objects” which is simply a blanket term for any entity within
the room aside from the player. Specifically, this includes collectable items and dragons:

ORG BANK_OBJECTS

; Dragon
d_x DS 1 ; Dragon X, Y location
d_y DS 1
d_dir DS 1 ; Facing direction
d_color DS 1 ; Color
d_state DS 1 ; State

; Item
i_x DS 1 ; Item X, Y location
i_y DS 1
i_index DS 1 ; Item bitmap index
i_id DS 1 ; Which item exactly?
i_state DS 1 ; State of item
i_color DS 1 ; Item color
i_luma DS 1 ; Luminance of item
i_luma_dir DS 1 ; Luminance direction of item (up or down)
i_p_items DS 1 ; Local buffer for player inventory

The dragon’s location and facing direction is tracked with d_x, d_y and d_dir. Since there are three
dragons, each of a different color, d_color stores the currently visible dragon’s color. d_state
determines whether there is a dragon in the current room or not.

If an item is in the current room, i_x, i_y stores its location and i_index determines which tile bitmap
is displayed there (either a key or chalice). i_id is a bit more specific, determining which exact item it is
(white key, black key, gold key, or chalice). As with the dragon, i_state determines if an item is in the
current room or not. i_color is the base color used to draw the item on screen. At each frame, i_luma
is added to the base color giving the item an adjustable luminance, which is controlled over time with
i_luma_dir.

i_p_items is simply a location within the BANK_OBJECTS room to store the player’s inventory, which is
normally in BANK_GAME. In certain parts of the code this minimizes bank switching.

12.7.3 - Initializing the Game

The initialization of Venture is not unlike that of XGS Bros. The title screen state is set, the maps are
loaded into SRAM framebuffers, then the title screen is drawn to the visible buffer for display once the
main execution loop begins. In the case of Venture, program memory was saved by not giving the title
screen its own unique map as in XGS Bros.; instead, the gate room map was used as a background for
the title. The trick, however, was using a different tile attribute table when loading it—one in which all the
original table’s colors had been converted to monochrome blue. This gives the map a faded, stylistic look

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
239

that makes it suitable as a title screen background. Changing the tile attribute table without changing the
map can often be a clever way to both save memory and achieve interesting effects. Check out the title
screen in Figure 12.14.

Figure 12.14 – The Venture title screen.

12.7.4 - The World Map

The first and most important difference between Venture and the other demos is that it creates a large
game world by using the same tile maps multiple times. To describe this world, a more complex mapping
system is needed than the technique used by XGS Bros. in which each available tile map links to the
next, then wraps back around to the first.

The map in Venture is a diamond-shape castle, in which each room has four possible exits that lead to
adjacent rooms. In order to describe each room, a few pieces of information are necessary:

• The tile map to draw as a background

• The status of each of the four doors (north, south, east and west). In other words, whether or not
each door is open or closed.

• The room into which each door leads.

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
240

Check out figure 12.15 to see the Venture map.

Figure 12.15 – The Venture world map.

On a system with less memory restrictions, the map for a game world such as this might simply be a 2D
array of structures in which each element is a room structure containing the above information. If the
player passes through the north door, the element at x, y – 1 is loaded as the next room. If the player
passes through the east door, the element at x + 1, y is loaded, and so on. However, in the case of
Venture, the game world is not rectangular, and wasting any elements in an array such as this would be
an unacceptable use of valuable program memory.

To optimize memory usage as much as possible, only the existing rooms themselves are represented in a
simple table. Each room entry in the table provides four pointers to other elements in the tables,
corresponding to the north, south, east and west doors.

Each room needs a tile map to draw as its background. Four bits are allocated within the room structure
for the tile map, which is more than enough. A total of 16 possible rooms can exist in the map, meaning
only four bits are needed to represent a world map index. Furthermore, since each room has exactly four
doors, a 4-bit vector is sufficient to represent the open or closed state of each door. So, if each room

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
241

needs a 4-bit tile map index, a 4-bit door vector, and four 4-bit adjacent room indices for its doors, we
need a total of 24 bits to represent one room. This fits into exactly two 12-bit SX52 program words,
making the structure very compact and efficient. Table 12.2 lists this structure nibble by nibble.

Table 12.2 – Structure of a world map room.

Nibble Definition

0 Tile Map Index

1 Door Bit Vector, NESW order (1 = Open, 0 = Closed)

2 North Door Map Destination

3 East Door Map Destination

4 South Door Map Destination

5 West Door Map Destination

The world map itself is stored directly in program memory. Since a 24-bit structure of packed nibbles is
not particularly easy to read, each element in the array is heavily commented. Here’s the complete world
map declaration:

; LEGEND
; --------------------------
; M = Main Entrance/Gate (0)
; G = Garden (1)
; H = Halls (2)

; MAP (12 ROOMS)
; ---------------------
; . . G 6 . .
; . G H G . . 5 A 7 .
; G H . H G 4 B . 9 8
; . G M G . . 3 0 1 .
; . . G 2 . .

world_map

 ; N ESW NESW
 DW $0F0, $123 ; 0 - Map = 0; Doors = 1111
 DW $199, $000 ; 1 - Map = 1; Doors = 1001

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
242

 DW $180, $000 ; 2 - Map = 1; Doors = 1000
 DW $1CB, $000 ; 3 - Map = 1; Doors = 1100

 DW $140, $B00 ; 4 - Map = 1; Doors = 0100
 DW $160, $AB0 ; 5 - Map = 1; Doors = 0110
 DW $120, $0A0 ; 6 - Map = 1; Doors = 0010
 DW $130, $09A ; 7 - Map = 1; Doors = 0011
 DW $110, $009 ; 8 - Map = 1; Doors = 0001
 DW $2E7, $810 ; 9 - Map = 2; Doors = 1110
 DW $2D6, $705 ; A - Map = 2; Doors = 1101
 DW $2B5, $034 ; B - Map = 2; Doors = 1011

12.7.5 - Enemy Movement
In each of the three key rooms, a colored dragon attacks the player to guard the item. Upon contact, the
player’s health meter is decremented and the player will eventually die if he doesn’t get out of the way.

The dragon does not move with any particular strategy other than to directly attack the player. The most
direct approach to this pattern would be comparing the dragon’s location to that of the player’s at each
frame, and if necessary, moving one tile closer along each axis in which they are not already touching.
Over the course of a few frames, the dragon would move from its original location to wherever the player
is.

This is a simple and space-effective way to move the dragon, but it is a bit unfair; the dragon will have
little trouble not only catching the player, but staying on him no matter where he goes. To make the
movement of the dragon appear slightly less contrived and give the player a better chance of evasion,
one constraint was made to this approach—the dragon can only move along one axis at a time. At any
given frame, the dragon can move horizontally closer to the player or vertically closer, but not both.

The dragon is updated during Handle_Input(), the same subroutine in which the player is moved. The
following code is executed every 8 ticks, like the player’s movement, to prevent the dragon from moving
too fast:
 ; Move the dragon closer to the player (move only one direction at a time)
 MOV t0, p_x ; Put the player X, Y in <t0, t1>
 MOV t1, p_y
 _BANK BANK_OBJECTS

 ; Move up towards the player
 CJAE d_y, t1, :dragon_not_below
 INC d_y
 JMP :dragon_move_done

 ; Move down towards the player
:dragon_not_below
 CJBE d_y, t1, :dragon_not_above
 DEC d_y
 JMP :dragon_move_done

 ; Move right towards the player
:dragon_not_above
 CJAE d_x, t0, :dragon_not_right
 INC d_x
 JMP :dragon_move_done

 ; Move left towards the player

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
243

:dragon_not_right
 CJBE d_x, t0, :dragon_move_done
 DEC d_x
 JMP :dragon_move_done

:dragon_move_done

 ; Make sure the dragon is always facing the player
 CJAE d_x, t0, :face_left
 MOV d_dir, #RIGHT
 JMP :dragon_face_done
:face_left
 MOV d_dir, #LEFT
:dragon_face_done

At any time, the dragon can move in one of four ways—left, right, up or down. The trick to implementing
our constraint is causing each of these cases to immediately exit the routine after executing, preventing
any further movements from occurring. This ensures the dragon cannot move along more than one axis
at once.

Lastly, the dragon can be drawn in one of two facing directions, and depending on whether or not the
player is to the dragon’s right or left, one of these two directions is selected and stored in d_dir.

12.7.6 - Color Effects

The keys and chalice all emit a pulsating glow to indicate their status as special items and to attract the
player. This effect is easy to implement and, when used in moderation, is a cool way for an object to
stand out against the background and appear special or unique.

As mentioned in the data structures section, items in venture are drawn with the “base color” stored in
i_color, and a separate luminance value stored in i_luma which is added to the base. The reason for
this separation is that it allows an item to be drawn in any given shade of the same color depending on
i_luma’s value. By changing this value over the course of multiple frames, the color’s luminance can
fade in and out, creating a smooth “pulsing” effect that resembles an ethereal glow or shimmer.

This cycling luminance value is implemented with two variables—i_luma, which of course stores the
current luminance value at a given time, and i_luma_dir, which determines whether the luminance will
increase or decrease on the next frame. After increasing or decreasing, i_luma is compared to the
minimum and maximum luminance values, determined by the ITEM_LUMA_MIN and ITEM_LUMA_MAX
constants. If either threshold is exceeded, the direction is reversed.

The following code is taken from Game_Update() and implements the luminance effect:

 ; Update effect every 4 ticks
 _BANK BANK_GAME
 MOV t0, ticks
 AND t0, #3
 CJNE t0, #0, :skip_flash
 _BANK BANK_OBJECTS

 ; If the item is currently at either endpoint, reverse the increment

Chapter 12: Advanced Graphics: Tile Graphics Engine

XGameStation™ Micro Edition User Guide
244

 CJNE i_luma, #ITEM_LUMA_MIN, :luma_not_min
 MOV i_luma_dir, #1 ; Move up (1)
:luma_not_min
 CJNE i_luma, #ITEM_LUMA_MAX, :luma_not_max
 MOV i_luma_dir, #255 ; Move down (-1)
:luma_not_max

 ; Add the increment to the value
 ADD i_luma, i_luma_dir

:skip_flash

The code executes every four frames to prevent the effect from being too fast. Note that every time the
luminance changes, i_luma_dir is added but never subtracted. This works because i_luma_dir is
either equal to 1 or 255, which is equivalent to the two’s compliment -1. When the luminance value is
being decreased, -1 is being added, equivalent to a subtraction of 1. This simplifies the logic and reduces
code. In environments like the XGS ME, where program space is always valuable, these kinds of little
tricks that replace conditional logic with simple arithmetic are a great way to save both memory and
speed.

12.7.7 - Conclusion

Venture is the most complex of the three Tile Graphics Engine demos and shows that with a little
planning, a complete game with detailed graphics, real objectives and hostile enemy characters can be
achieved. In addition, smaller details like the translucent, overlapping wall shadows and the tile attribute
table swap that produces the blue-shaded title screen illustrate that tons of code and clock cycles are not
always required to get interesting results. Often, simple tweaks to something that already exists is enough
to create something significant.

If you would like to continue studying this program, consider hacking some modifications into it. Try
modifying the map, altering the behavior of the dragons, adding new items or perhaps changing the
objective, or maybe add some new uses of the luminance effect.

Appendix A: SX52 Instruction Set Reference

XGameStation™ Micro Edition User Guide
245

Appendix A: SX52 Instruction Set Reference
The following is a reference of the instruction set available on the SX52. Note that this information is also
available in the XGS Micro Studio IDE with the Instruction Browser tool.

Instruction Set Reference Key

Light Grey These instructions cannot follow a skip instruction

Dark Grey These instructions rely on the status of the carry flag if the
CARRYX option is active. Make sure to set the carry flag to a
known state before these instructions execute.

White These instructions behave normally in all conditions.

SX52 Instruction Set

Instruction Words Cycles Affects Operation

ADD fr, #Const 2 2 fr, w, C, DC, Z fr = fr + Const (CLC)

ADD fr, w 1 1 fr, C, DC, Z fr = fr + w (CLC)

ADD fr1, fr2 2 2 fr, w, C, DC, Z fr1 = fr1 + fr2 (CLC)

ADD w, fr 1 1 w, C, DC, Z w = w + fr (CLC)

ADDB fr1, /fr2.Bit 2 2 fr1, Z fr1 = fr1 + NOT fr2.Bit

ADDB fr1, fr2.Bit 2 2 fr1, Z fr1 = fr1 + fr2.Bit

AND fr, #Const 2 2 fr, w, Z fr = fr AND Const

AND fr, w 1 1 fr, Z fr = fr AND w

AND fr1, fr2 2 2 fr1, w, Z fr1 = fr1 AND fr2

AND w, #Const 1 1 w, Z w = w AND Const

AND w, fr 1 1 w, Z w = w AND fr

BANK fr 1 1 fsr fr.(7-5) -> fsr.(7-5)

Appendix A: SX52 Instruction Set Reference

XGameStation™ Micro Edition User Guide
246

CALL Addr 1 3 pc pc = Addr, Push (2)

CJA fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr > Const (CLC)

CJA fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 > fr2 (STC)

CJAE fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr >= Const (STC)

CJAE fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 >= fr2 (STC)

CJB fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr < Const (STC)

CJB fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 < fr2 (STC)

CJBE fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr <= Const (CLC)

CJBE fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 <= fr2 (STC)

CJE fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr = Const (STC)

CJE fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 = fr2 (STC)

CJNE fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr <> Const (STC)

CJNE fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 <> fr2 (STC)

CLC 1 1 C C-Flag = 0

CLR !wdt 1 1 wdt, TO, PD !wdt = 0, TO = 1, PD = 1 (1)

CLR fr 1 1 fr, Z fr = 0

CLR w 1 1 w, Z w = 0

CLRB fr.Bit 1 1 fr.Bit fr.Bit = 0

CLZ 1 1 Z Z = 0

CSA fr, #Const 3 3/4 w, C, DC, Z, (pc) pc++, if fr > Const (CLC)

CSA fr1, fr2 3 3/4 w, C, DC, Z, (pc) pc++, if fr1 > fr2 (STC)

CSAE fr, #Const 3 3/4 w, C, DC, Z, (pc) pc++, if fr >= Const (STC)

CSAE fr1, fr2 3 3/4 w, C, DC, Z, (pc) pc++, if fr1 >= fr2 (STC)

CSB fr, #Const 3 3/4 w, C, DC, Z, (pc) pc++, if fr < Const (STC)

Appendix A: SX52 Instruction Set Reference

XGameStation™ Micro Edition User Guide
247

CSB fr1, fr2 3 3/4 w, C, DC, Z, (pc) pc++, if fr1 < fr2 (STC)

CSBE fr, #Const 3 3/4 w, C, DC, Z, (pc) pc++, if fr <= Const (CLC)

CSBE fr1, fr2 3 3/4 w, C, DC, Z, (pc) pc++, if fr1 <= fr2 (STC)

CSE fr, #Const 3 3/4 w, C, DC, Z, (pc) pc++, if fr = Const (STC)

CSE fr1, fr2 3 3/4 w, C, DC, Z, (pc) pc++, if fr1 = fr2 (STC)

CSNE fr, #Const 3 3/4 w, C, DC, Z, (pc) pc++, if fr <> Const (STC)

CSNE fr1, fr2 3 3/4 w, C, DC, Z, (pc) pc++, if fr1 <> fr2 (STC)

DEC fr 1 1 fr, Z fr = fr – 1

DECSZ fr 1 ½ fr fr = fr - 1, pc++, if fr = 0

DJNZ fr, Addr 2 2/4 fr, (pc) fr = fr - 1, pc = Addr, if fr <> 0

IJNZ fr, Addr 2 2/4 fr, (pc) fr = fr + 1, pc = Addr, if fr <> 0

INC fr 1 1 fr, Z fr = fr + 1

INCSZ fr 1 1/2 fr, (pc) fr = fr + 1, pc++, if fr = 0

IREAD 1 4 w, m (m:w) -> m:w

JB fr.Bit, Addr 2 2/4 (pc) pc = Addr, if fr.Bit = 1

JC Addr 2 2/4 (pc) pc = Addr, if C = 1

JMP Addr 1 3 pc pc = Addr

JMP pc+w 1 3 pc, C, DC, Z pc = Addr+w (CLC)

JMP w 1 3 pc pc = w

JNB fr.Bit, Addr 2 2/4 pc pc = Addr, if fr.Bit = 0

JNC Addr 2 2/4 pc pc = Addr, if C = 0

JNZ Addr 2 2/4 pc pc = Addr, if Z = 0

JZ Addr 2 2/4 pc pc = Addr, if Z = 1

MODE Const 1 1 m m = Const

Appendix A: SX52 Instruction Set Reference

XGameStation™ Micro Edition User Guide
248

MOV !option, #Const 2 2 Option, w Option = Const

MOV !option, fr 2 2 Option, w, Z Option = fr

MOV !option, w 1 1 Option Option = w

MOV !port, #Const 2 2 !port, w Port-Config. = Const

MOV !port, fr 2 2 !port, w, Z Port-Config. = fr

MOV !port, w 1 1 !port Port-Config. = w

MOV fr, #Const 2 2 fr, w fr = Const

MOV fr, w 1 1 fr fr = w

MOV fr1, fr2 2 2 fr1, w, Z fr1 = fr2

MOV m, #Const 1 1 m m = Const

MOV m, fr 2 2 m, w, Z m = fr

MOV m, w 1 1 m m = w

MOV w, #Const 1 1 w w = Const

MOV w, fr 1 1 w, Z w = fr

MOV w, /fr 1 1 w, Z w = NOT fr

MOV w, ++fr 1 1 w, Z w = fr + 1

MOV w, <<fr 1 1 w, C w = RL fr

MOV w, <>fr 1 1 w w = SWAP fr

MOV w, >>fr 1 1 w, C w = RR fr

MOV w, --fr 1 1 w, Z w = fr – 1

MOV w, fr-w 1 1 w, C, DC, Z w = fr – w (STC)

MOV w, m 1 1 w w = m

MOVB fr1.Bit, /fr2.Bit 4 4 fr1.Bit fr1.Bit = NOT fr2.Bit

MOVB fr1.Bit, fr2.Bit 4 4 fr1.Bit fr1.Bit = fr2.Bit

Appendix A: SX52 Instruction Set Reference

XGameStation™ Micro Edition User Guide
249

MOVSZ w, ++fr 1 1 w w = fr + 1, pc++, if w = 0

MOVSZ w, --fr 1 1 w w = fr – 1, pc++, if w = 0

NOP 1 1 - -

NOT fr 1 1 fr, Z fr = fr XOR $FF

NOT w 1 1 w, Z w = w XOR $FF

OR fr, #Const 2 2 fr, w, Z fr = fr OR Const

OR fr, w 1 1 fr fr = fr OR w

OR fr1, fr2 2 2 fr1, w, Z fr1 = fr1 OR fr2

OR w, #Const 1 1 w, Z w = w OR Const

OR w, fr 1 1 w, Z w = w OR fr

PAGE Addr 1 1 PA2-0 PA2...PA0 = Addr.(11...9)

RET 1 3 pc Pop (3)

RETI 1 3 pc, C, DC, Z Pop, Restore (3) (4)

RETIW 1 3 pc, C, DC, Z Pop, Restore, RTCC += w (3) (4)

RETP 1 3 pc Pop, Restore Page (5)

RETW Const 1 3 pc w = Const, Pop (3)

RL fr 1 1 fr, C fr.(7..1) = fr.(6..0), fr.0 = C, C = fr.7

RR fr 1 1 fr, C fr.(6..0) = fr.(7..1), fr.7 = C, C = fr.0

SB fr.Bit 1 1/2 (pc) pc++, if fr.Bit = 1

SC 1 1/2 (pc) pc++, if C = 1

SETB fr.Bit 1 1 fr.Bit fr.Bit = 1

SKIP 1 2 pc pc++

SLEEP 1 1 TO, PD TO = 1, PD = 0, Stop clock

SNB fr.Bit 1 1/2 (pc) pc++, if fr.Bit = 0

Appendix A: SX52 Instruction Set Reference

XGameStation™ Micro Edition User Guide
250

SNC 1 1/2 (pc) pc++, if C = 0

SNZ 1 1/2 (pc) pc++, if Z = 0

STC 1 1 C C = 1

STZ 1 1 Z Z = 1

SUB fr, #Const 2 2 fr, w, C, DC, Z fr = fr – Const (STC)

SUB fr, w 1 1 fr, C, DC, Z fr = fr – 1 (STC)

SUB fr1, fr2 2 2 fr1, w, C, DC, Z fr1 = fr1 - fr2 (STC)

SUBB fr1, /fr2.Bit 2 2 fr1, Z fr1 = fr1 - NOT fr2.Bit (STC)

SUBB fr1, fr2.Bit 2 2 fr1, Z fr1 = fr1 - fr2.Bit (STC)

SWAP fr 1 1 fr fr.(7..4) = fr.(3..0), fr.(3..0) = fr(7..4)

SZ 1 1/2 (pc) pc++, if Z = 1

TEST fr 1 1 Z Z = 1, if fr = 0

TEST w 1 1 Z Z = 1, if w = 0

XOR fr, #Const 2 2 fr, W, Z fr = fr XOR Const

XOR fr, w 1 1 fr, Z fr = fr XOR w

XOR fr1, fr2 2 2 fr, W, Z fr1 = fr1 XOR fr2

XOR w, #Const 1 1 w, Z w = w XOR Const

XOR w, fr 1 1 w, Z w = w XOR fr

Appendix B: XGS ME Schematic Reference

XGameStation™ Micro Edition User Guide
251

Appendix B: XGS ME Schematic Reference
This chapter contains schematics that each describe one aspect of the XGS ME hardware. The following
table lists each schematic and its page number.

Clock Divider Figure B.1 Page 252
Expansion Interface Map Figure B.2 Page 253
Processor I/O Map Figure B.3 Page 254
Joystick/Serial Interface Figure B.4 Page 255
Keyboard Interface Figure B.5 Page 256
3.3/5.0/12.5V Power Supplies Figure B.6 Page 257
Onboard Programmer Figure B.7 Page 258
Sound Subsystem Figure B.8 Page 259
SRAM Figure B.9 Page 260
Video Subsystem Figure B.10 Page 261

Appendix B: XGS ME Schematic Reference

XGameStation™ Micro Edition User Guide
252

Figure B.1 - Clock Divider

Appendix B: XGS ME Schematic Reference

XGameStation™ Micro Edition User Guide
253

Figure B.2 - Expansion Interface Map

Appendix B: XGS ME Schematic Reference

XGameStation™ Micro Edition User Guide
254

Figure B.3 - Processor I/O Map

Appendix B: XGS ME Schematic Reference

XGameStation™ Micro Edition User Guide
255

Figure B.4 - Joystick/Serial Interface

Appendix B: XGS ME Schematic Reference

XGameStation™ Micro Edition User Guide
256

Figure B.5 - Keyboard Interface

Appendix B: XGS ME Schematic Reference

XGameStation™ Micro Edition User Guide
257

Figure B.6 - 3.3/5.0/12.5V Power Supplies

Appendix B: XGS ME Schematic Reference

XGameStation™ Micro Edition User Guide
258

Figure B.7 - Onboard Programmer

Appendix B: XGS ME Schematic Reference

XGameStation™ Micro Edition User Guide
259

Figure B.8 - Sound Subsystem

Appendix B: XGS ME Schematic Reference

XGameStation™ Micro Edition User Guide
260

Figure B.9 - SRAM

Appendix B: XGS ME Schematic Reference

XGameStation™ Micro Edition User Guide
261

Figure B.10 - Video Subsystem

Index

XGameStation™ Micro Edition User Guide
262

Index

ADD instruction ... 245
ADDB instruction ... 245
AND instruction ... 245
Assembler Input .. 36
Assembler Output.. 37
assembly-language ... 6
Audio ... 9
BANK instruction ... 245
BCD... 168
BIN16 .. 40
Bitmaps ... 112
breakpoint.. 70
brightness.. 13
Brownout ... 46
Built-in Programmer .. 14
CALL instruction .. 246
CJA instruction .. 246
CJAE instruction.. 246
CJB instruction .. 246
CJBE instruction.. 246
CJE instruction .. 246
CJNE instruction.. 246
CLC instruction.. 246
Clock ... 64
CLR instruction.. 246
CLRB instruction ... 246
CLZ instruction .. 246
COM.. 60
computer architecture.. 6
Crystal ... 47
CSA instruction.. 246
CSAE instruction ... 246
CSB instruction.. 246
CSBE instruction ... 247
CSE instruction.. 247
CSNE instruction ... 247
data structures........105, 118, 142, 143, 144, 145, 167
DB25 ... 1, 14
Debugger... 65
DEC instruction ... 247
DECSZ instruction... 247
Default Radix... 38
Device String ... 47
digital electrical engineering 6
DJNZ instruction.. 247
Document Area ... 30
Document Selector.. 30
Editor Colors & Styles.. 37

Electro-Static Discharge.. 3
ESD... 3
Expansion Bus .. 9
Extension Cords .. 3
Fire Cube... 88
Firmware1, 173, 174, 190, 191, 193, 194
Floormapper .. 90
FUSE... 49
FUSEX .. 49
Fuzzy/Blurry/Noisy Video Output............................. 13
Gamepad... 1, 2
Hacking ... 105
Hardware... 37
Heat Sinks... 4
height map......................116, 117, 118, 120, 158, 162
I/O ... 9
IEEE695 .. 40
IJNZ instruction ... 247
INC instruction... 247
INCSZ instruction .. 247
INHX16.. 40
INHX32.. 40
INHX8M... 40
INHX8S ... 40
Initialization.. 146
Instruction Browser.. 49
IREAD ... 160
IREAD instruction .. 247
JB instruction... 247
JC instruction... 247
JMP instruction.. 247
JMP PC + W... 147
JNB instruction .. 247
JNC instruction .. 247
JNZ instruction .. 247
Joystick.. 1, 2, 158, 167, 168
JZ instruction ... 247
line numbers.. 35
lookup tables 146, 147, 160, 170
LPT1.. 14, 43
Mnemonic Set ... 37
MODE instruction .. 247
MOV instruction... 248
MOVB instruction .. 248
MOVSZ instruction .. 249
Ms. Pac Man ... 128
NOP instruction ... 249
NOT instruction ... 249

Index

XGameStation™ Micro Edition User Guide
263

NTSC..6, 73, 81, 87, 105, 137
Object Code Format .. 39
OR instruction.. 249
Oscillator ... 47
Output Window.. 30
PAGE instruction ... 249
PAL6, 73, 81, 87, 101, 105, 112, 130, 131, 137
parallel port.. 14
PCB... 6
Perspective.. 163
PGM mode .. 14
Plasma .. 92
Poll .. 67
Pong.. 93
potentiometers... 13
power supply

Detaches ... 4
Power Supply .. 1
printed circuit board... 6
Programmer Unit ... 9
Raycaster .. 94
RCA cable ... 10
RCA Cable .. 1
Receptacles... 3
Rem Colors ... 95
Reset Timer... 46
RET instruction.. 249
RETI instruction... 249
RETIW instruction ... 249
RETP instruction ... 249
RETW.. 147
RETW instruction .. 249
RISC.. 6
RL instruction .. 249
Rotozoomer... 96
RR instruction.. 249
Run.. 67
SASM .. 60
saturation... 13
SB instruction .. 249
SC instruction .. 249
SETB instruction.. 249

sine......89, 92, 95, 101, 103, 107, 108, 109, 115, 131,
134, 166

SKIP instruction... 249
SLEEP instruction ... 249
SNB instruction.. 249
SNC instruction ... 250
SNZ instruction.. 250
Square Wave... 116
SRAM.. 9, 106, 158, 162
Starfield ... 98
Status Bar.. 30
STC instruction.. 250
Step... 67
STZ instruction .. 250
SUB instruction.. 250
SUBB instruction ... 250
SWAP instruction .. 250
SX Programming API172, 173, 174, 175, 176, 177,

178, 179, 181, 182, 185
SX18.. 46
SX48.. 46
SX-Key .. 2, 14
SX-Key IDE ... 14
SYSMODE .. 14
SZ instruction .. 250
TEST instruction.. 250
Tetris ... 99, 100
text string... 106, 131
Toolbar .. 30
Troubleshooting... 72
Ubicom .. 37
User-Level Interface .. 173
Video ... 9
video kernel ... 145, 149
Walk .. 67
Wall outlets.. 3
Warranty.. 5
XGameStation Micro Edition 1, 6
XGS ME .. 6
XGS Micro Studio IDE... 14
XOR instruction ... 250

XGameStation™ Micro Edition User Guide

Notes

XGameStation™ Micro Edition User Guide

Notes

XGameStation™ Micro Edition User Guide

Notes

